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Abstract: Baseflow is the portion of streamflow that comes from groundwater and subsurface sources. Although baseflow is essential for
sustaining streams during low flow and drought periods, we have little information about how and why it has changed over large regions of
the continental United States. The objective of this study was to evaluate how changes in the climate system have affected observed monthly
baseflow records at 3,283 USGS gauges over the last 30 years (1989–2019). We developed a statistical modeling framework to determine
the relationship between monthly baseflow and monthly climate predictors (i.e., precipitation, temperature, and antecedent wetness). Overall,
we found that baseflow trends and the factors influencing them vary by region and month. In the US Northeast, increases were detected earlier
in the year (February and March) and in the summer (May and June), and were likely due to increasing precipitation, warmer temperature,
and subsequent changes in snowmelt. Increasing baseflow in the US Pacific Northwest and Midwest were associated with increases in
precipitation and antecedent wetness throughout the year. Decreasing trends were located in the US Southeast and Southwest. Baseflow
trends in the US Southeast were only detected in March, possibly as a result of decreased precipitation during the spring. On the other
hand, decreases in baseflow in the Central Southwestern United States occurred throughout the year. These trends were associated with a
lack of precipitation and increases in temperature. Finally, we examined the relationship between monthly baseflow trends and changes in
total water storage using monthly Gravity Recovery and Climate Experiment mascon products from the Jet Propulsion Laboratory. In this
study, trends in total water storage were strongly associated with baseflow trends across the United States. The spatial and temporal variability
in baseflow response to climate reported here can aid water managers in adapting to future climate change. DOI: 10.1061/(ASCE)HE.1943-
5584.0002170. © 2022 American Society of Civil Engineers.

Introduction

Baseflow is the portion of streamflow that is discharged from
groundwater and subsurface sources. Shallow and deep aquifers
contribute to baseflow, along with water transmitted through soil

layers from precipitation, snowmelt, lakes, riverbanks, floodplains,
wetlands, and/or springs (Price 2011; Stoelzle et al. 2013). It is a
critical water resource because it maintains streamflow during
droughts and dry seasons, and it sustains aquifer and stream eco-
systems (Gleeson and Richter 2017). Baseflow is also an important
contributor to water quality because it is associated with higher in-
stream nitrate (e.g., Ayers et al. 2021; Kang et al. 2008; Schilling
and Lutz 2004; Schilling and Zhang 2004) and lower temperatures
(Price 2011). While baseflow is especially critical in regions that
experience long dry seasons with minimal rainfall, it also supplies
the majority of streamflow in wetter, temperate regions (Bosch
et al. 2016; Santhi et al. 2008). In recent decades, water-rich regions
across the continental United States have experienced water short-
ages because of droughts and growing demands for water supply
during baseflow conditions (Peterson et al. 2020; Stephens and
Bledsoe 2020). Baseflow reductions contribute to water stress
and are associated with warmer stream temperatures and lower
dissolved oxygen (Price 2011). On the other hand, increases in
baseflow have been shown to contribute to higher nitrate loads
that promote excessive algae growth in agricultural watersheds
(e.g., Ayers et al. 2021; Kelly et al. 2015; Richards et al. 2021;
Schilling and Lutz 2004). Understanding baseflow changes is es-
sential to inform risk-based management decisions for water qual-
ity and counteracting adverse effects of climate change.

Previous studies examining streamflow trends across the United
States have tended to focus on extreme events and high flows that
cause costly floods (e.g., Archfield et al. 2016; Douglas et al. 2000;
Hirsch and Ryberg 2012; Hodgkins and Dudley 2011; Rice et al.
2015; Slater and Villarini 2016). However, because baseflow con-
tributes to a large portion of streamflow in many US watersheds,
it is important to understand baseflow changes for human activi-
ties (e.g., food production, drinking water, recreation), water
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quality (e.g., nitrate loads and streamflow temperature), ecosystem
health (e.g., connectivity of in-stream habitat) and droughts that
cause high economic losses (Ahiablame et al. 2013; Hellwig and
Stahl 2018; Rumsey et al. 2015; Santhi et al. 2008). Furthermore,
streamflow trends have been found to closely follow baseflow
trends, indicating that groundwater discharge controls many as-
pects of streamflow regimes (e.g., Döll et al. 2009; Lucas et al.
2020; Huntington and Niswonger 2012; Kim and Jain 2010; Luce
and Holden 2009; Rumsey et al. 2015).

Despite its relevance, our current understanding of baseflow is
narrow, and we do not have a clear understanding of how baseflow
has changed at the national scale. Studies that investigated base-
flow across the continental United States usually focused on estima-
tion methods and the accuracy of measurements rather than baseflow
response (e.g., Chen and Teegavarapu 2021; Ficklin et al. 2016;
Gnann et al. 2020; Santhi et al. 2008; Xie et al. 2020). For example,
Xie et al. (2020) created a criterion to evaluate the accuracy of base-
flow separation methods across the United States. Aboelnour et al.
(2021) created a regression model to predict the Baseflow Index
(BFI) using a watershed’s physical and geological properties. These
recent studies point to the uncertainty and gaps in our understanding
of baseflow for different climate and topographic conditions. In ad-
dition, there are discrepancies in the literature as to how low-flow
statistics are defined, and many studies narrowly analyze changes
in low flow (Smakhtin 2001). For example, it is common for studies
to assess the annual minimum 7-day discharge (e.g., Kormos et al.
2016; Smakhtin 2001; Stephens and Bledsoe 2020), which is useful
to determine changes in the severity of annual dry spells and to set
permit discharge limits. However, these studies lack a comprehensive
understanding of the variability in baseflow seasonality and volumes
(Dudley et al. 2020; McCabe and Wolock 2002).

While a substantial body of work provides some consensus
concerning changes in streamflow, disparities still exist in our
understanding of baseflow changes and factors driving trends. The
attribution of changes in baseflow is important for distinguish-
ing natural and anthropogenic factors that affect water supply.
Attribution studies are often conducted through case studies
(e.g., Ahiablame et al. 2017; Bosch et al. 2016; Brutsaert 2008;
Chen 2019; Meyer 2005) or at the regional scale (e.g., Ayers et al.
2020; Demaria et al. 2016; Ledford et al. 2020; Luce and Holden
2009; Rumsey et al. 2015; Singh et al. 2015). At these smaller
scales, baseflow analyses are spatially dense and can analyze local
response at a higher temporal resolution using a multitude of
factors. However, we still do not have a clear picture of the patterns
or drivers responsible for baseflow changes across large spatial
scales. Some existing work focused on the attribution of baseflow
changes at the continental scale (e.g., Ayers et al. 2019; Chen and
Teegavarapu 2021; Ficklin et al. 2016), but they calculated the cor-
relation between hydrologic factors and baseflow to relate variables
rather than developing a multivariate approach to identify the rel-
ative and potential concurrent role of different drivers. Although
these types of analyses are useful to identify individual relation-
ships, they do not tell us what the most important variables are, nor
do they account for the role of multiple variables at once.

To adapt to climate change and secure water resources in the
future, we need a comprehensive framework that determines base-
flow changes and identifies climatic factors driving trends. As a
result, the objective of this study was to analyze the role of climate
on baseflow response across the continental United States. First,
we detected trends in monthly baseflow from 1989 to 2019 at
3,283 USGS streamflow gauges. We identified the relationship be-
tween monthly baseflow and monthly climate variables (precipita-
tion, temperature, and antecedent wetness) at the watershed scale,
using a statistical modeling framework. Furthermore, we calculated

monthly trends in Gravity Recovery and Climate Experiment
(GRACE) mascon products (2002–2017) as a representation of
changes in total water storage. We also conducted a sensitivity
analysis to understand how the results presented here depend on
the baseflow separation method selected. The results of this work
provide insights into the role that climate has played in driving the
changes in baseflow across the continental United States.

Data and Methodology

Data

Daily discharge data were obtained for 3,283 USGS GAGES-II
streamflow gauges (Falcone 2011) across the continental United
States. Daily mean discharge was downloaded from the USGS
National Water Information System website (USGS 2021). Sites
were only included if they had at least 30 years of data from 1989
to 2019 with less than 5% of missing values and if they were cur-
rently active sites (as of January 2020). The median record length is
75 years. Sites with long-term records were preferred because they
are likely to be more representative of hydrologic conditions, and
they are better for statistical analyses (Feaster and Lee 2017).
Furthermore, the USGS defines long-term stream gauges as those
containing at least 30 years of streamflow records (USGS 2021). Of
the selected streamflow gauges, 657 were classified as reference,
which Falcone (2011) defined as minimally affected by anthropo-
genic influences relative to other gauges in that region. On the other
hand, 2,626 gauges were considered nonreference (i.e., gauges that
have been altered by human activities). Drainage areas for all catch-
ments ranged from 6 to 50,362 km2 with a mean of 3,473 km2 and
a median of 860 km2.

Precipitation and temperature data were downloaded from the
Parameter-elevation Regression on Independent Slopes Model
(PRISM) climate group data (Daly et al. 2002). These data are
freely available from 1890 to the present at a spatial resolution of
approximately 4 km. At every USGS streamflow gauge, we aggre-
gated the basin-averaged monthly mean temperature and accumu-
lated precipitation using the watershed boundaries (taken from
the USGS Streamgage NHDPlus Version 1) (Stewart et al. 2006).
Antecedent wetness is defined using the sum of the previous
3 month’s precipitation as an approximation for basin wetness.
For example, average monthly baseflow in May is related to ante-
cedent wetness using the sum of precipitation in April, March,
and February. Defining antecedent wetness in this way is useful
because it utilizes available precipitation data when soil moisture
data are insufficient over large scales and long record periods.
In addition, Ayers et al. (2020) determined that the sum of the
previous 3 months’ precipitation was a better metric for defining
antecedent conditions relative to baseflow compared with other def-
initions using monthly precipitation data (e.g., different weighted
values of the previous months’ precipitation).

To assess changes in total water storage, GRACE mission
remote-sensing data products were used. GRACE products report
terrestrial water storage changes across the globe by measuring
gravitational anomaly. Data sets measure changes in the earth’s
gravitational pull as differences in rates between two satellites,
which can be used to infer changes in groundwater. For more
details, see Save et al. (2016) and Tapley et al. (2004). Many studies
have utilized GRACE data products to assess changes in total
water storage, specifically groundwater levels and subsidence
(e.g., Brookfield et al. 2018; Kim et al. 2021; Rateb et al. 2020;
Tapley et al. 2004). Total terrestrial water storage includes ground-
water, soil moisture, vegetation, surface water, snow, and ice.
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GRACE products are available at a resolution of 300–400 km (at
midlatitudes) from 2002 to 2017. For this study, we used the 3°
mascon solutions downscaled to a 0.5° grid (Landerer and
Swenson 2012; Swenson and Wahr 2006; Swenson 2012; Watkins
et al. 2015), which were downloaded from Save et al. (2016).
Although the data set may be too coarse for watershed scale analy-
ses, for the purposes of this study, it provides insight into changes
in water storage and basin wetness across a large spatial scale.
It also captures changes in water stored in deeper subsurface
layers that may not be detected using simple climate predictors
(i.e., precipitation and temperature).

Baseflow Separation Methods

Many methods have been developed to separate baseflow from
streamflow, including tracer-based methods and hydrograph sepa-
ration techniques (e.g., Aksoy et al. 2009; Boussinesq 1877;
Cartwright et al. 2014; Cey et al. 1998; Chapman 1999; Eckhardt
2008; Lyne and Hollick 1979; Miller et al. 2015; Sloto and Crouse
1996). In the present study, we used the Eckhardt (2005) digital
filter method in the following formulation:

bt ¼
ð1 − BFImaxÞαbt−1 þ ð1þ αÞBFImaxQt

ð1 − αBFImaxÞ
ð1Þ

where bt = filtered baseflow response at the t time step; bt−1 =
response at the t-1 time step; Qt = original streamflow at the t time
step; and α = recession constant. In this study, we set α ¼ 0.925 as
recommended by Nathan and McMahon (1990) and because other
studies have shown high correlation between baseflow estimates
using α ¼ 0.925 and tracer-based observations (e.g., Gonzales
et al. 2009; Lott and Stewart 2016; Partington et al. 2012). In ad-
dition to the recession constant, the BFImax parameter needed to be
defined. We used the FlowScreen package in R (Dierauer and
Whitfield 2019) to determine the BFImax value and to calculate
baseflow using the Eckhardt method. The FlowScreen package
reports BFI summary statistics for daily discharge over the sum-
mary period, and we selected the mean of the daily BFI values
(1989–2019) for each watershed. Although there is inherent sub-
jectivity involved in selecting appropriate parameters for the reces-
sion constant and BFI, these filters have been found to be reliable
methods as long as their use is consistent throughout the study
(Chapman 1999; Eckhardt 2005; Institute of Hydrology 1980;
Nathan and McMahon 1990). See also Tallaksen (1995), Brodie
(2005), and Xie et al. (2020) for a review of the baseflow separation
techniques and their performance. It is also worth noting that the
use of graphical hydrograph separation methods is challenging in
snowmelt dominated systems (e.g., Miller et al. 2015). While dig-
ital filters could impact the results of a study of this kind in areas
like the Western United States, we aggregated baseflow to monthly
resolution for our analysis, which should alleviate some of the
potential concerns by decreasing the sensitivity of our results to
potential errors in the exact timing of baseflow changes.

Statistical Modeling Framework

To determine the presence of temporal trends, we used the Mann-
Kendall (MK) trend test (Kendall 1948; Mann 1945). The MK is a
nonparametric trend test that determines the presence of monotonic
patterns in the central part of the distribution. We used the period of
record from 1989 to 2019 to detect trends in monthly baseflow.
GRACE mascon products were analyzed from 2002 to 2017 be-
cause the mission was only run for this 15-year period. Trend de-
tection was conducted on a monthly time scale for the baseflow and
GRACE time series. We set a significance level to 5% in this analy-
sis. All calculations were performed in R using the modifiedmk
package (Patakamuri and O’Brien 2018).

To model the observed average monthly baseflow time series,
we used the generalized additive model for location, scale, and
shape (GAMLSS) (Rigby and Stasinopoulos 2005; Stasinopoulos
and Rigby 2007) because it provides a high degree of flexibility for
distributions and their functional relationships in its parameters
compared with other statistical models. The gamma distribution
was selected because it is a suitable distribution for describing
positive continuous values that are skewed, such as baseflow.
Furthermore, previous studies have determined that the gamma
distribution is well suited for modeling streamflow and low flow
across regions of the United States (e.g., Slater and Villarini 2017;
Villarini and Strong 2014). In these models, μ and σ are the two
parameters of the gamma distribution where the variability in μ
over the record period was described by one of seven possible
regression models that relate baseflow to the climate predictors:
precipitation (xp), antecedent wetness (xm), and temperature (xt).
In addition, σ was held constant because it did not significantly
depend on the covariates analyzed here. Table 1 shows the four
most commonly selected statistical models with their correspond-
ing model formulations. The parameterization of our models is
based on the gamlss package in R (Rigby and Stasinopoulos 2005).
The monthly models provide a probability distribution for every
year, and reflect a range of possible values for the variable of
interest. Fig. S1 illustrates two examples of the type of time series
that were created for each site and month, comparing a good model
fit for Neuse River near Goldsboro, North Carolina (02089000), for
June (R ¼ 0.81) and a poor model fit for Baron Fork at Eldon,
Oklahoma (USGS station 07197000), for April (R ¼ 0.57).

To determine the best model formulation that characterized
baseflow at each site and month, we used stepwise model selection.
We selected the GAMLSS model with the smallest Bayesian infor-
mation criterion (BIC) (Schwarz 1978) value, which generally re-
sults in a more parsimonious model than one obtained with respect
to the Akaike information criterion (AIC) (Akaike 1978). Because
many streams across the United States have a high degree of inter-
mittency, the analysis was only run for months that contributed
greater than 5% of the total annual baseflow.

To evaluate model performance, the Pearson’s correlation coef-
ficient was calculated between the observations and the median
(50th quantile) of the probabilistic model fit. In this analysis, we
did not apply any model validation because of the good model

Table 1. Formulations of the four most common statistical models and their model formulations

Model Model formulation Percentage selected (%)

Precipitationþ antecedent wetness logðy1Þ ¼ α1 þ β1 · xp þ γ1 · xm 49
Precipitationþ antecedent wetnessþ temperature logðy2Þ ¼ α2 þ β2 · xp þ γ2 · xm þ δ2 · xt 18
Antecedent wetness logðy3Þ ¼ α3 þ β3 · xm 11
Precipitation logðy4Þ ¼ α4 þ β4 · xp 6

Note: Baseflow (y1) is modeled as a function of precipitation (xp), antecedent wetness (xm), and temperature (xt). “Percentage selected” is the number of
models selected out of all models for every month and site.
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performance overall, and in similar analyses (i.e., Ayers et al.
2019), we applied leave-one-out cross validation, which showed
comparable results to the correlations coefficients obtained when
using the full data set. However, we further quantified how well
our models perform using the mean square error (MSE) skill score
(SSMSE) and its decomposition (Hashino et al. 2006):

SSMSE ¼ 1 −MSE
σ2
0

ð2Þ

where σ0 = standard deviation of the observations. A skill score of 1
is a perfect score, whereas lower values indicate bias in the model
predictions, in which a value of 0 specifies that the performance
of the model is the same as the climatology, and negative values
indicate worse performance

SSMSE ¼ ρ2ro −
�
ρro − σr

σ0

�
2 −

�
μr − μ0

σ0

�
2

ð3Þ

where ρ2ro represents the potential skill (i.e., the coefficient of deter-
mination and quantifies the skill in the absence of biases); and ρro is
the correlation coefficient. The ½ρro − ðσr=σ0Þ�2 is the slope reliability
(SREL), which captures the conditional bias, and σr indicates the stan-
dard deviation of the model predictions. The term ½ðμr − μ0Þ=σ0�2
represents the unconditional bias (SME), where μr and μ0 are the
mean of the modeled and observational data, respectively.

Results and Discussion

Monthly Baseflow Trend Results

The MK trend test was used to evaluate trends in observed
monthly baseflow from 1989 to 2019 (Fig. 1). Overall, 28% of

stations had a significant trend in at least 1 month (16% increasing
and 12.7% decreasing). Across all stations and all months that the
analysis was run (i.e., for a given month in which baseflow con-
tributed greater than 5% of the annual total baseflow), a significant
increase and decrease were detected 4.2% and 3.6% of the time,
respectively. There were regional patterns in the direction and
seasonality of trends. In the US Northeast (Maine, Vermont,
New Hampshire, New York, Massachusetts, Connecticut, Rhode
Island, New Jersey, and Pennsylvania), increasing baseflow trends
were detected from January to July. Increases were detected more
often in January and February and then again in June and July.
Clusters of increasing baseflow trends persisted from March to
May, but in smaller numbers along the East Coast. Increasing
trends in the US Northeast are consistent with Hodgkins and
Dudley (2011), who found that mean summer (May to September)
baseflow increased in Maine, New Hampshire, and Vermont from
1950 to 2006. Other studies have also reported increased baseflow
during the winter in the US Northeast (e.g., Ficklin et al. 2016;
Hodgkins et al. 2005).

Increasing trends were detected in the US Midwest from March
to August. Although trends were numerous in May and June, there
were temporal differences in trend detection across the region.
In the southeast part of this region (Ohio, Indiana, Illinois, and
Kentucky), increases were detected earlier (March and April),
whereas in the north (North Dakota, South Dakota, and Minnesota)
increases persisted later in the summer (July and August). Increas-
ing baseflow trends were consistent with many other studies that
have examined baseflow and low flow trends in the US Midwest
(e.g., Ayers et al. 2019; Douglas et al. 2000; Lins and Slack 2005;
Zhang and Schilling 2006). Increases in baseflow were also located
in the US Pacific Northwest (Washington, Oregon, and Northern
California) in April and May. Slightly east in Idaho, Montana, and

Fig. 1. Results of the MK trend test applied to the observed time series of monthly baseflow from 1989 to 2019.
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Wyoming, increases occurred from April to June. Although upward
trends were detected more often during the spring, increasing
trends persisted throughout the remainder of the year for some
gauging stations. These trend results were dissimilar from other
studies that found decreased streamflow in the US Pacific North-
west (e.g., Kormos et al. 2016; Luce and Holden 2009). For exam-
ple, Lins and Slack (2005) found few trends in streamflow, but
more decreases than increases in the annual minimum flow over
the second half of the twentieth century. However, consistent with
these studies, our results detected decreasing baseflow trends at
some locations from July to March.

While increasing trends display seasonal differences across
the continental United States, decreases in baseflow were consis-
tently located in the US Southwest (Southern California, Arizona,
Utah, Colorado, and New Mexico) and in the southern Great
Plains (Texas, Oklahoma, Nebraska, and Kansas). Many studies
have also reported streamflow declines in the Central and
Western United States (e.g., Barnett et al. 2008; Peterson et al.
2020; Rumsey et al. 2015; Stewart et al. 2005). Furthermore,
downward trends in baseflow were located in the US South-
east, which stretches from North Carolina south along the East
Coast and into Mississippi. Although decreases in baseflow oc-
curred often in March, almost no statistically significant trends
are found in all other months. Recently, a few studies reported
decreases in baseflow in the US Southeast and the Gulf of
Mexico (e.g., Bosch et al. 2016; Rodgers et al. 2020; Singh et al.
2015; Stephens and Bledsoe 2020), but they usually focused on
annual baseflow trends. The results from our analysis could in-
dicate that annual low flow trends are driven by lower baseflow
during March.

Model Performance

To assess how well models fit at the 3,283 USGS stations, we cal-
culated Pearson’s correlation coefficient, R, between the observa-
tions and the median (50th quantile) of the probabilistic fit for every
month (Fig. 2). Furthermore, we calculated the decomposition of
the skill score, which includes conditional and unconditional biases
in the model outputs (Fig. S2). The results based on the skill score
confirm the results of the correlation coefficient and show that our
models work well overall. Across all months and stations, the mod-
els performed well with a mean and median correlation coefficients
of 0.65 and 0.69, respectively. The models fit slightly better from
November to January (monthly mean R > 0.70), which is likely
because baseflow is more stable during the winter, thus easier to
model. The models performed worst during April (mean R ¼ 0.48),
highlighting that, for many sites, the models had difficultly identify-
ing the relationship of baseflow with snowmelt and spring precipi-
tation. For all other months, mean R values range from 0.61 to 0.68,
indicating good overall fit.

Model performance varied based on regional differences in cli-
mate. During colder months (December to March), higher correla-
tion coefficients were located in the US Northeast, Southeast and
along the Pacific coast. FromMay to August, the models performed
better in the US Midwest, the Great Plains, and in the Western
United States. However, the models performed poorly during the
fall and winter in the US Southwest. Furthermore, for about 4%
of sites, no predictors were selected in the model formulation
(Fig. 2). For these sites, climate predictors used in this analysis
did not capture baseflow response. Because these predictors are
simple, there are inherent limitations associated with our method-
ology, i.e., we can only identify the factors controlling baseflow

Fig. 2.Map of the Pearson correlation coefficient between the baseflow observations and the median (50th quantile) of the best selected based on BIC
for every month. For each site and month, model selection was only run if that month’s baseflow contributed more than 5% of total annual baseflow.
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and not necessarily capture all the physical mechanisms at play.
However, correlation coefficients are high overall (mean of 0.65),
which gives evidence that the models are good at capturing var-
iability in monthly baseflow. Albeit simple, this framework iden-
tifies the relationship between climate variables and baseflow,
providing insight into baseflow trends on a large scale across
the continental United States.

Climate Predictors

To understand the factors driving baseflow trends, we modeled
monthly baseflow using monthly precipitation, temperature, and
antecedent wetness. Fig. 3 shows the results using one month
to represent each season (i.e., March, June, September, and
December), whereas Figs. S3–S5 show the results for each predic-
tor and month. Overall, precipitation and antecedent wetness were
selected most often in the model formulations. For every site and
month, precipitation was selected 76% of the time, and antecedent
wetness was selected 85% of the time. Furthermore, the model that
only considered precipitation and antecedent wetness in its formula
was selected most often (49%), which indicates that both predictors
are important to determine water availability. While precipitation is
more relevant at a shorter temporal scale (i.e., the same month’s
precipitation), the previous 3 months’ precipitation provides infor-
mation about the memory in the system and baseflow’s delayed
response to precipitation events. Together, the positive relationships
indicate that increases in baseflow over the last 30 years were
driven by increased precipitation.

On the other hand, temperature was selected in 29% of all model
formulations. Either a positive or negative relationship with base-
flow was detected depending on the month and location. Because
temperature controls evapotranspiration and snowmelt processes,
it likely plays more of an indirect role in our results. Generally,
temperature has a positive relationship with baseflow during the
winter and spring, pointing to snowmelt processes contributing

to baseflow increases. During the summer, a negative relationship
indicates that increased temperature and subsequent increases
in evapotranspiration have likely caused declines in baseflow.
Although the indirect relationship between baseflow and temper-
ature may be muted, we speculate about the physical processes that
may be controlling baseflow for different regions.

Across the continental United States, there are differences in
climate factors due to weather patterns and watershed characteris-
tics that dominate the response time of baseflow. Some ground-
water systems have a greater connection to the surface because of
shallow water tables and/or vegetation where a drying or wetting
of the soil layer is more quickly observed in baseflow response
(Price 2011). For example, there are characteristically shallow
water tables and unconfined aquifers across the US Midwest
(Fan et al. 2013). As a result, baseflow in this area may respond
to precipitation more quickly than in other regions. In this study,
precipitation and antecedent wetness were consistently selected
as predictors and more often during warmer months (March to
August) (Figs. 3, S3, and S4). Other studies have reported increases
in heavy and long-lasting precipitation events over the US Midwest
as a result of persistent weather types that are tied to moisture trans-
port and low-level jet streams (e.g., Cook et al. 2008; Gao and
Schlosser 2019; Harding and Snyder 2015; Villarini et al. 2011;
Zhang and Villarini 2019). Increases in heavy precipitation (and
antecedent wetness) are likely a contributing factor to increasing
baseflow trends observed across the region. Furthermore, during
the late spring and summer, temperature is negatively associated
with baseflow. Although increased temperature and evapotranspi-
ration inversely affected baseflow, the increasing baseflow trends
detected in the US Midwest indicate that their influence over trends
is outweighed by increases in precipitation.

During the winter, a positive relationship between baseflow
and temperature is detected in higher latitude catchments (Figs. 3
and S5). Temperature influences snow and snowmelt processes
that control the timing of winter/spring recharge and baseflow

Fig. 3. Relationship between monthly baseflow and monthly precipitation, monthly antecedent wetness, and monthly temperature. Selected months
are shown for simplicity.
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discharge. Earlier snowmelt has been shown to affect the season-
ality of baseflow. Studies have reported increases in streamflow as a
result of increased precipitation, and they have shown that longer
recession periods cause more streamflow earlier with less stream-
flow in the late summer (e.g., Ahiablame et al. 2017; Coleman and
Budikova 2013; Demaria et al. 2016; Hayhoe et al. 2008; Hodgkins
and Dudley 2011; Hodgkins et al. 2005; Sen Gupta 2010). In the
US Northeast, changes to snow and snowmelt are likely causing
changes in baseflow. The selected models showed a positive rela-
tionship between temperature and baseflow from December to
April, contributing to increased baseflow in January and February.
Precipitation and antecedent wetness were also selected, which
could drive increasing winter baseflow trends as well as increases
detected from May to July. The results reported here are consis-
tent with those of Hodgkins and Dudley (2011), who found that
summer 7-day low flows (May to September) had a strong positive
correlation with summer precipitation, although correlation with
air temperature was mostly negative and not significant at the
10% level.

The US Pacific Northwest is characterized by a warm and dry
summer with the majority of precipitation falling as mountain snow
during the winter. In terms of baseflow trends, there were distinct
increases during April and May (Fig. 1). Interestingly, precipitation
was selected as a predictor, but antecedent wetness was less im-
portant in April (Figs. 3, S3, and S4). Here, stations that selected
antecedent wetness were located along the Cascade mountain
range, whereas sites closer to the coast indicated no relationship.
These results highlight that winter precipitation and spring tem-
perature are likely controlling the magnitude of baseflow in late
spring. Over a similar study period (1980–2012), Abatzoglou
et al. (2014) noted a regional warming trend paired with decreases
in summer and autumn precipitation. Furthermore, other studies
have shown that the frequency of heavy precipitation decreased
over the region (e.g., Harding and Snyder 2015; Mallakpour and
Villarini 2017), which could account for the few decreasing trends
detected.

In the US Southwest, a negative relationship between temper-
ature and baseflow was detected for most months (Figs. 3 and S5).
As expected, warmer air temperature contributed to higher evapo-
transpiration and less water available for infiltration and subsequent
baseflow discharge. Precipitation and antecedent wetness were
also selected, but the interaction between climate factors may be
more complex in the Western United States than in other regions.
In arid mountainous watersheds (i.e., the Sierra Nevada and Rocky
Mountain ranges), snow accounts for the largest component of pre-
cipitation received (Carroll et al. 2019; Hammond et al. 2019;
Rumsey et al. 2015). As a result, baseflow response may depend
heavily on snowmelt processes, which are controlled by tempera-
ture. Since the 1990s, climatic oscillations in the Pacific Ocean
have caused the US Southwest to be severely dry and warm with
a deficit of cold-season precipitation (Cayan et al. 2010; Williams
et al. 2020). The recent, long-term trend toward a warmer climate
caused decreased snowpack, earlier runoff, increased evapotranspi-
ration, and dryer soils (Rumsey et al. 2015). In our results, it is
difficult to identify the physical mechanisms controlling baseflow
declines because warmer temperature could also be correlative to a
lack of precipitation and decreases in evaporative cooling during
drought conditions (Milly et al. 2018; Mueller and Seneviratne
2012). Overall, these large-scale circulation patterns likely contrib-
uted to the consistently decreasing trends in baseflow found in
this study.

Although the estimated coefficients for antecedent wetness and
precipitation were positive at most stations, some watersheds in
the Western United States detected a negative relationship with

baseflow. This inverse relationship could indicate that other factors
are at play. For example, irrigation and groundwater pumping are
implemented more frequently when not enough precipitation is
available for water supply. Although studies have shown that land
use practices in the Western United States decreased groundwater
levels and baseflow (e.g., Russo and Lall 2017; Zipper et al. 2019),
pumping and irrigation can also increase water inputs at the surface,
resulting in more water available for baseflow discharge. Pumped
irrigation water coming from deeper aquifers would not normally
come to the stream and thus would represent new water available
for baseflow.

Groundwater pumping in the High Plains Aquifer (underlying
Kansas, Nebraska, and Oklahoma and Texas) is likely contributing
to baseflow decreases in the southern Great Plains. Many studies
documented streamflow depletion as a result of changes in the High
Plains Aquifer water levels (e.g., Peterson et al. 2020; Scanlon et al.
2012; Sophocleous 2005; Zipper et al. 2021). Because crop irriga-
tion demands are highest during dry climate conditions (Butler
et al. 2018), baseflow reductions are due to either streamflow
depletion or surface water diversions that are indirectly related to
climate. Furthermore, increased temperature lengthens the growing
season (Jeong et al. 2014), which could increase plant transpiration
and water demand causing baseflow declines for some months.
However, here we can only speculate about the influence of land
use and land management because our models focus on the role of
climate only (Figs. 3 and S3–S5). Across the southern Great Plains,
precipitation and antecedent wetness were selected as predictors.
Temperature was selected throughout the year, but it was more
prominent from March to August. Furthermore, a consistent neg-
ative relationship was detected between temperature and baseflow.
Because baseflow is decreasing throughout the region, temperature
and land use practices are likely outweighing precipitation inputs.
Similarly, in the US Southeast, decreases in baseflow could be
driven by increases in temperature and a lack of precipitation.
Previous studies pointed to the role of large-scale circulation pat-
terns and drought conditions in streamflow response in the Eastern
United States (e.g., Coleman and Budikova 2013; Rodgers et al.
2020; Singh et al. 2015). For example, Singh et al. (2015) quanti-
fied the impact of climate variability cycles on baseflow for the
Flint River in Georgia, showing that La Niña patterns were asso-
ciated with baseflow decreases.

GRACE Trends

To further verify our modeling results and assess baseflow changes,
we investigated monthly trends in GRACE mascon products
(2002–2017). GRACE products describe changes in wetness or
total water storage because they indicate changes in water available
in the surface and subsurface. It is important to note that GRACE
data products are reported as a gridded data set, and it is much
larger than the typical watershed analyzed in this study (i.e., greater
than 3,000 km2). As a result, it does not provide an understanding
of changes in basin wetness on an individual watershed scale.
Rather, the benefit of reporting changes in GRACE data products
(i.e., total water storage trends) is to verify our modeling results
across a large, regional scale using an additional data set. Further-
more, there can be substantial changes in baseflow with slight
changes in groundwater storage because groundwater discharge to
streams is controlled by the hydraulic gradient between the stream
and the aquifer (Currell 2016; de Graaf et al. 2019). For this com-
parison, we ran trend detection for monthly baseflow trends over
the same period (2002–2017).

Fig. 4 illustrates strong agreement between monthly trends
in total water storage and baseflow for March, June, September,
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and December. See Fig. S6 for the trend results for each month.
Generally, increasing total water storage trends were detected
across the Northern United States while decreases are located in
the South. GRACE trends correspond well to baseflow trends over
the same period from December to June in terms of the statistical
significance of increasing and decreasing water storage trends.
On the other hand, from July to November there is more ambiguity
because GRACE trends are nonsignificant, which may indicate that
total water storage was relatively stable over the 15-year period.
Furthermore, significant trends in baseflow could be a result of a
lagged response to precipitation earlier in the year.

In terms of the statistical models developed in this study, the
stations that did not select any predictors are located in the Western
United States. For this area, decreases in total water storage agreed
with decreasing baseflow trends throughout the year. In addition,
significant increases in basin wetness were detected in the North
Central United States (Montana, Wyoming, and Idaho), where our
models did not perform as well. Overall, changes in total water stor-
age agree with the seasonality of baseflow trends in most regions.
These results indicate that baseflow trends in the last 30 years were
dominated by more recent changes in climatology, highlighting
the influence of hydrometeorological processes in the subsurface.
Similarly, Brookfield et al. (2018) found that GRACE-derived
changes in total water storage in the High Plains Aquifer were
representative of changes in shallower alluvial aquifers, but the

relationship was weaker for saturated groundwater storage deeper
in the High Plains Aquifer.

Conclusions and Future Directions

The objective of this study was to detect changes in monthly base-
flow across the continental United States over the last 30 years.
We built a statistical modeling framework to determine the role of
climate in driving baseflow response. Overall, we found that
changes in monthly baseflow and model selection varied with re-
gion and month across the United States. Specifically, the results of
this study can be summarized as follows:
• Increasing trends in baseflow occurred often but varied depend-

ing on the month. Model selection showed a positive relation-
ship with precipitation and antecedent wetness, indicating that
increases in precipitation are likely the main driver of increasing
baseflow trends. The seasonality of baseflow is controlled by
changes in temperature during the late winter and early spring
likely through snowmelt processes. This relationship was more
prominent in higher latitudes and higher elevations, such as in
the US Northeast, upper Midwest, and Pacific Northwest.

• Decreases in baseflow did not vary across months and were
found in the US Southwest, southern Great Plains, and US
Southeast. Our statistical models showed that decreasing trends

Fig. 4. Total water storage trends (2002–2017) using GRACE data products compared to the monthly baseflow trends (computed for the same time
period) for selected months. Trends were computed using the MK trend test applied to monthly total water storage.
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were driven by increases in temperature and subsequent evapo-
transpiration. However, further research is needed to relate base-
flow to physical mechanisms and land management practices
because irrigation and groundwater pumping are likely playing
a major role in controlling decreasing baseflow trends across
arid and semiarid regions of the United States.

• Overall, models performed well with a mean correlation coef-
ficient of 0.65 for all months and sites. For some stations, none
of the predictors were selected (4% of sites) in the model for-
mulations. In other words, the climate factors considered here
were not informative for describing baseflow response.

• Despite the large spatial resolution of GRACE data products,
monthly trends in total water storage were congruent with
baseflow trends across the continental United States. Trends
agreed well in areas where the models were not able to predict
baseflow as well (e.g., in the Western United States). Statisti-
cally significant trends in total water storage were also located
across the North Central United States, corresponding to base-
flow trends that have not been examined in much detail within
the literature.

• We found that the selected baseflow separation method did
not influence the trend detection or the model selection results
reported in this study.
This study provides a critical first step to understand baseflow

response under recent changes in the climate system. An interesting
next step in this work would be to regionalize the baseflow trends
and improve the modeling framework by including watershed char-
acteristics and other predictors. A limitation of this analysis is
that we did not include baseflow response to other climate drivers
(i.e., evapotranspiration, snowmelt processes, and rainfall intensity
and type) and land use change (i.e., vegetation, agriculture, and
urbanization). Other climate variables were not included because
data were difficult to obtain over large regions of the continental
United States. As reported in this study, the influence of snow proc-
esses is likely contributing to baseflow changes during the late
winter and early spring. However, the indirect relationship between
temperature and snow creates uncertainty in the interpretation,
and data were not included because they were difficult to obtain
(i.e., snow type and amount can be hard to measure). Since warmer
global temperatures have may effect changes in snow and snowmelt
timing, it is important that future studies examine their influence
on baseflow, especially in mountainous watersheds that are more
vulnerable. It could also be useful to include interaction terms as
potential predictors because of the relationship between climate and
subsurface processes.

Future studies assessing in more detail the influence of land use
and land cover changes on baseflow could help to better capture
complex processes. A next step in this work could be to include
agricultural predictors from the US Department of Agriculture’s
database in model formulations, similar to the approach used in
Ayers et al. (2020), where agriculture in the US Midwest was char-
acterized using corn and soybean data. For the purposes this study,
we did not include agricultural predictors because it would require
that we regionalize the trends and identify predictors accordingly
for different time frames. However, including agricultural predic-
tors in model formulations would be useful to understand the
interaction between climate and land use on a large scale. Further-
more, groundwater pumping was not included in the analysis.
Although pumping is known to influence groundwater levels and
baseflow, it is not readily available with sufficient resolution over
long periods. Existing data sets have uncertainties about where
groundwater pumping is located, and there are often little to no
observations to verify results (Foster et al. 2020; Taylor and Alley
2001). Because groundwater supply controls water available for

baseflow discharge, future studies could relate land use and land
management practices to changes in baseflow.

In this analysis, we assume that the trends are monotonic and the
outcome of these test depends on a relatively short 30-year record.
Furthermore, our statistical modeling framework assumes that the
relationship between baseflow and climate predictors is stationary.
We acknowledge that the observed time series may exhibit more
complicated behaviors and that there is an ongoing debate about
the limitations of nonstationary methods (e.g., Douglas et al. 2000;
Serinaldi and Kilsby 2016; Serinaldi et al. 2018). As a result, the
results of this study would require additional efforts and refine-
ments in their application for future realizations to water resource
management. However, our study provides valuable insight into
climate factors driving the direction and magnitude of historic base-
flow trends. Our statistical framework can be applied in other re-
gions to understand baseflow trends on a finer scale. This work also
highlights limitations and gaps in our current knowledge of base-
flow across the continental United States. By examining baseflow
over large regions, we can understand groundwater availability and
changes in streamflow that are critical for water resources manage-
ment at the local, regional, and national scales. Predicting baseflow
response is essential to understand how a watershed’s hydrology
will change in the face of climate and land use changes.
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