
Articles
https://doi.org/10.1038/s41893-022-00873-0

1Department of Biological Sciences and Research and Education in Energy, Environment and Water (RENEW) Institute, University at Buffalo, Buffalo, 
NY, USA. 2Department of Geography, Texas A&M University, College Station, TX, USA. 3Institute of Remote Sensing and GIS, School of Earth and Space 
Sciences, Peking University, Beijing, China. 4Department of Geosciences, Idaho State University, Pocatello, ID, USA. 5Department of Ecosystem Science 
and Management, The Pennsylvania State University, University Park, PA, USA. 6School of Ecosystem and Forest Sciences, The University of Melbourne, 
Burnley, Victoria, Australia. 7Department of Biology, Duke University, Durham, NC, USA. 8Office of Research and Development, US Environmental 
Protection Agency, Cincinnati, OH, USA. 9National Centre for Groundwater Research and Training, College of Science and Engineering,  Flinders University, 
Bedford Park, South Australia, Australia. 10Kansas Biological Survey–Center for Ecological Research, Environmental Studies Program, and Department of 
Ecology & Evolutionary Biology, University of Kansas, Lawrence, KS, USA. 11Department of Earth and Planetary Sciences, University of California, Santa 
Cruz, CA, USA. 12INRAE, UR Riverly, Centre Lyon-Grenoble Auvergne-Rhône-Alpes, Villeurbanne, France. 13Division of Biology, Kansas State University, 
Manhattan, KS, USA. 14Biological Sciences, University of Alabama, Tuscaloosa, AL, USA. 15Department of Biological Sciences, Virginia Tech, Blacksburg, 
VA, USA. 16US Geological Survey MD-DE-DC Water Science Center, Catonsville, MD, USA. 17Kansas Geological Survey, University of Kansas, Lawrence, KS, 
USA. 18O’Neill School of Public and Environmental Affairs, Indiana University, Bloomington, IN, USA. 19Joint Research Centre of the European Commission, 
Ispra, Italy. 20School of Aquatic and Fishery Sciences,  University of Washington, Seattle, WA, USA. 21Department of Wildlife, Fish & Environmental Studies, 
Swedish University of Agricultural Sciences, Umeå, Sweden. ✉e-mail: cakrabbe@gmail.com

Stream gauging stations that measure water level surface eleva-
tion and estimate volumetric discharge (collectively referred 
to here as ‘flow’) are fundamental to water information sys-

tems1,2. Networks of stream gauging stations (or ‘stream gauges’) 
inform water-allocation decisions to support human and ecosystem 
water needs and help forecast flood and drought risk to society3. 
Collecting and archiving long-term hydrologic data is required for 
analysis of hydroclimatic trends4 and quantification of the effects of 
flow regime alteration on the ecology5, capacity to transport pollut-
ants6 and biogeochemistry (for example, carbon fluxes7) of freshwa-
ter ecosystems. Thus, information from gauge networks underpins 
our understanding of global water and elemental cycles and pro-
vides critical knowledge for managing water resources.

The location of gauging stations is influenced by many factors, 
most notably the need for information for managing water for 
human water needs8. However, gauge installation dictated by local 
and national planning may have yielded inadvertent biases in data 
when describing rivers and streams across regional or global scales. 

Hydrometric networks should be representative of regional socio-
ecological factors, climate conditions and landscape heterogeneity. 
For example, skewed spatial representation in the rain gauge net-
work is a source of bias in precipitation estimates9, and similar land-
scape bias exists in the locations of US Geological Survey (USGS) 
stream gauges10,11. Similar placement bias in the global stream gauge 
network may limit our understanding of human water-supply sys-
tems, compromise efforts to achieve global biodiversity goals12, 
challenge the estimation of hydrologic impacts of human activities13 
and undermine best practices for determining environmental and 
cultural flow standards14. Yet our ability to assess the global repre-
sentativeness of gauges has, until recently, been limited by a lack of 
global-scale stream gauge and environmental data.

Here we leverage recent global hydrologic datasets to report an 
investigation of potential biases in the spatial distribution of the 
global stream gauge network. We represented the global river net-
work using the Global Reach-level A priori Discharge Estimates 
for Surface Water and Ocean Topography (GRADES) dataset15, 
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which derived nearly 3 million river segments based on the 90 m 
MERIT Hydro digital elevation model16 (Supplementary Methods). 
GRADES also contains daily discharge estimates from 1979–2013 
at these ~3 million river segments with drainage areas >25 km2  
(Fig. 1). We used a global database of 32,091 stream gauges17,18 
to map gauge placement along the GRADES river network. We 
combined this with a suite of socioecological, climatic and phys-
iographic characteristics of rivers from HydroATLAS19 to assess 
spatial and landscape biases in gauge placement. Leveraging these 
global databases, we (1) determined whether the current network of 
stream gauges accurately reflects the distribution of socioecological 
and environmental conditions among global rivers, (2) quantified 
the representativeness of the existing gauge network within major 
freshwater habitat types that shape global patterns in biodiversity 
and (3) identified priority geographic areas where new gauge instal-
lation would reduce global biases in gauge placement.

Biases of the global gauge network
We compared currently gauged river segments to a global river 
dataset (GRADES) according to 13 geospatial attributes that rep-
resent important aspects of hydrology, climate, physiography 

and socioecological conditions (Fig. 2; details in Supplementary  
Table 2). We used Wasserstein distance20,21 to contrast the statistical 
distribution of each attribute of gauged versus all river segments to 
identify the types of river that are over- or under-represented by the 
current gauge network (Fig. 2 and Supplementary Fig. 4). Gauge 
placement favoured large (high Strahler stream order), perennial 
and highly dam-regulated rivers (Fig. 2a,b,d). Watersheds with high 
population density and large human footprints (a composite metric 
for anthropogenic influences) were over-represented, whereas riv-
ers with high proportions of upstream protected areas (lands con-
served by governmental or other organizations) and small human 
footprints were under-represented (Fig. 2a,c). The gauge network 
also disproportionately favoured mid-latitude (Supplementary  
Fig. 1) and mesic climates, whereas gauge coverage in extremely hot 
or cold regions was relatively sparse (Fig. 2e).

The overall patterns of bias in stream gauge placement suggested 
under-representation of areas previously identified as critical to 
freshwater conservation efforts2,22, including catchments with pro-
tected areas23 and headwater streams24. A lack of monitoring in areas 
with minimal human impact or those with unique ecological fea-
tures limits the potential to develop and implement science-based 
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Fig. 1 | Global distribution of stream gauges with four examples. Global distribution of stream gauges (red crosses; N = 32,091) along the river network 
(blue) identified by GRADES15 with four example gauges shown. a–d, Examples of river gauges. a, Mississippi River, Louisiana, United States (station: USGS 
07374000). b, Little Ruaha River, Tanzania (station: 1KA2A). c, Weida, Thuringia, Germany (station: 57729). d, Kororoit Creek, Victoria, Australia. Credits: 
a, USGS; b, J.D.O.; c, R. Dupas; d, T. Fletcher.
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water policy. For example, free-flowing watersheds (Fig. 2, ‘Flow 
regulation’) and those containing protected areas (Fig. 2, ‘Protected 
area’) provide freshwater habitat critical to preserving biodiversity12 
but are under-represented in the existing gauge network (bias val-
ues of 0.49 and 0.13, respectively; Fig. 2a). Furthermore, monitor-
ing rivers in protected areas is crucial for evaluating threats such as 
encroaching urban and rural development23,25 and for developing 
reference sites and realistic conservation, restoration and manage-
ment goals26. Similar data are needed for non-perennial streams and 
free-flowing rivers, many of which are changing in abundance in 
response to climate change13,27. Inadequate monitoring of habitats 
relative to their prevalence (or their conservation importance) also 
hinders our ability to inform policy decisions regarding their pro-
tection28. Thus, the intersection of conservation priorities and gauge 
location emphasizes the need to adequately capture watershed het-
erogeneity in hydrometric networks.

Biases in terms of major habitat types
The global stream gauge network is biased towards specific river 
and landscape attributes, and patterns in gauge placement bias may 
not be uniform across all habitat types. We assigned a major fresh-
water habitat29 to each gauge and conducted bias analyses within 
each habitat type to identify patterns in gauge placement bias 
specific to particular habitats (Fig. 3). Similarities in bias patterns 
among habitat types were found, particularly with respect to cli-
mate. Rivers in tropical and temperate habitats each clustered based 
on patterns of bias, with patterns in precipitation and air tempera-
ture especially pronounced. Biases in polar fresh waters varied from 
some overall trends, including an under-representation of areas 
with high human footprints. The greatest instances of bias largely 

occurred in polar and xeric freshwaters, while temperate habi-
tats had the lowest degree of bias overall. Representation (or lack 
thereof) was consistent across all habitat types for some variables, 
including under-representation of catchments containing protected 
areas and a high bias towards increased flow permanence (the pro-
portion of days with active flow; Methods). The tendency for gauge 
placement to favour heavily regulated rivers was also greatest in 
xeric regions, presumably due to the greater need to monitor water 
in water-scarce environments30. Small rivers (that is, low Strahler 
stream order) were under-represented across all habitat types, a pat-
tern most pronounced in large river deltas and tropical and subtrop-
ical rivers, ecosystems facing tremendous freshwater biodiversity 
challenges31. Note that patterns for both flow permanence and 
stream order are probably much more exaggerated than what we 
show here given the 25 km2 watershed size limitation present in our  
river network.

The tendency for extreme climates to be under-represented in 
the global gauge network highlights a present-day challenge for 
water resource professionals. If the global hydrometric network 
does not adequately capture variability in environmental character-
istics among rivers, hydrologic patterns of many watersheds become 
difficult to understand and forecast32. For example, it is challeng-
ing to investigate patterns in intermittent and ephemeral streams 
due to biases against gauge placement in non-perennial rivers33,34. 
Interest in non-perennial rivers has increased over the past sev-
eral decades35, and the potential source of error from skewed dis-
charge estimates could present a challenge for identifying changes 
over time36. Investing in monitoring environmental ‘extremes’ 
now will improve future modelling efforts as these characteristics  
(for example, intermittency) become more common37. Similarly, 
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Fig. 2 | Comparison of currently gauged river segments to the GRADES dataset according to geospatial attributes. a, Bias in the global gauge network 
according to variables describing hydrology, climate, physiography and socioecological conditions. Symbol size is scaled according to the magnitude 
of bias (Wasserstein distance) and colour indicates direction of bias; red indicates over-representation (positive standardized bias), and blue indicates 
under-representation (negative standardized bias). b–e, Examples of gauged river segments (yellow) versus all global river segments (black) for values 
of flow permanence (b), human footprint (c), degree of flow regulation (d) and mean annual air temperature (e). Where gauged segments show lower 
cumulative probability than all segments, it indicates under-representation of those values (along the x axes) in the gauge network and vice versa.
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systematic under-representation of small rivers across habitats 
limits our understanding of watershed structure and function, 
including regional probability of drying38, upstream contributions 
to watershed carbon budgets39 and the importance of headwater 
streams in supporting biodiversity and ecological integrity through-
out their corresponding watersheds24. Building gauge infrastructure 
to adequately reflect hydrologic diversity within a watershed is thus 
fundamental to building effective water and ecosystem manage-
ment approaches in the future.

Spatial distribution of under-represented rivers
Our analyses identified areas where additional gauge installation 
would improve the hydrologic, climatic, physiographic and socio-
ecological representation by the global gauge network. Priority 
areas were determined by adding a hypothetical gauge to a river 
segment currently lacking a gauge then calculating the resulting 
change in overall average bias of the resulting global network and 
repeating for all segments currently without gauges (Methods). 
Positive or negative values indicate whether adding a gauge to a 
river segment would increase or decrease global overall bias, respec-
tively. Regions with the lowest contribution to bias reduction were 
in North America, Europe and Asia, largely due to existing gauge 
coverage (Fig. 4 and Supplementary Fig. 1). Addition of gauges to 
arid regions was consistently important for bias reduction, includ-
ing across large swaths of western North America, northern Africa, 
central and northern Australia and the Eurasian steppe. As large 
rivers were over-represented in the current gauge network, adding 
more gauges on larger rivers contributed little to global bias reduc-
tion, regardless of the surrounding segment attributes, as seen in the 
Nile River in Egypt and Sudan (Fig. 4). Although there is correlation 
between areas of high priority (Fig. 4) and currently under-gauged 
geographic regions (Fig. 1), variation in priority was better explained 
by geospatial attributes. For example, non-perennial rivers are glob-
ally common yet under-gauged, so rivers in xeric regions remain 
a high priority for new gauges regardless of existing gauge density 
(for example, southwestern North America). On the other hand, 
high-gradient mountainous regions have generally high global 
gauge coverage (Fig. 3) and are thus low priority (for example, the 
Himalayas) regardless of current gauge presence. It is thus impor-
tant to note that contribution to global bias reduction does not 
necessarily correspond to conservation priority or importance for 
human water needs (for example, the Himalayas40).

Addressing patterns of gauge placement bias on a global scale 
requires greater integration of gauging infrastructure and data 
platforms from local to international levels2. Stream gauges serve 
a variety of water resource and management needs41,42; thus, strat-
egies to develop a more representative gauge network that bal-
ances local water-management information needs with larger-scale 
priorities to reduce global bias in which regions and biomes are 
represented would increase societal value of the overall gauging 
network. Improvements to gauge infrastructure must also balance 
equity and data access for communities requiring more informed 
water-management practices43. Multiple alternatives to adding 
gauges may help bring this goal within reach. For example, advances 
in remote sensing technology44 have enabled global water resource 
estimates. While remote sensing cannot fully replace in situ dis-
charge monitoring, the addition of these methods for large rivers 
may enable a shift of in-stream gauging resources to smaller riv-
ers. The addition of remote sensing and subsequent reallocation 
of in-stream monitoring can improve overall watershed coverage 
and enable detailed, large-scale assessments of river networks45. 
Furthermore, community science efforts can provide data for sys-
tems lacking stream gauges46, and greater river network coverage 
can improve modelling approaches where costs of new gauge infra-
structure are prohibitive38. Our analysis provides an important first 
step to identify representation disparities in global water informa-
tion systems; this information, coupled with continued communi-
cation between water infrastructure decisionmakers and data users, 
will help ensure stream gauge networks adequately support human 
and ecosystem water information needs.

Discussion
By demonstrating the biases in the current global gauge network, 
we underscore the need for additional (or relocation of) gauging 
to improve representation of certain river attributes in the global 
network. Unbiased representation will improve our ability to under-
stand ways to support human and ecosystem water needs into the 
future, particularly as valuable long-term data are generated2. Gauge 
placement decisions are made to satisfy a variety of local factors, 
but the use of gauge data to draw conclusions about watershed 
hydrology, ecology and human water needs comes with the neces-
sity that the gauge network is representative of the attributes of all 
rivers11. Better accounting for socioecological and environmental 
heterogeneity in gauge networks will improve hydrologic models47 
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Fig. 3 | Bias in the gauge network. Bias in the gauge network for 11 freshwater ecoregions of the world29 according to variables describing hydrology, 
climate, physiography and socioecological conditions. Bias values range from positive (red, over-represented) to negative (blue, under-represented) 
according to magnitude (Wasserstein distance) and direction (standardized bias). Ecoregions are hierarchically clustered based on bias values.
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and their utility in informing water security challenges and strat-
egies for addressing the freshwater biodiversity crisis12. Further, 
given the paucity of water information in some of the world’s river 
basins, additional gauges and advances in alternative data sources 
can substantially improve the information base upon which water 
resource-management decisions are made. Although local and 
regional assessments need to work within the bounds of com-
munity data needs, a global perspective illustrates that the locally 
driven process of building hydrometric networks has led to a biased 
system which falls short of equitably meeting social and ecosystem 
water information needs. However, local and global data needs are 
not at odds so long as representation (or lack thereof) of river het-
erogeneity is considered when investigating gauge data across large  
spatial scales.

We recommend future gauge placement decisions consider 
under-represented geospatial attributes when adding to existing 
gauge networks. Specifically, we recommend prioritizing additional 
gauge placement in areas of environmental vulnerability in addition 
to locations in need of socially relevant hydrologic data. We show 
that gauge infrastructure is lagging in areas critical to freshwater 
conservation, particularly areas with low human impact and inter-
mittent flow conditions. We do not support the removal of gauges 
to compensate for bias, as loss of any gauge data could pose nega-
tive consequences for local data needs; however, our framework 
could be used to characterize compound losses associated with 
discontinuation of gauges. Fluctuations in the operation and avail-
ability of stream gauge data pose a substantial challenge for water 
information systems48. Previous studies2 have offered a series of 
solutions to water information challenges that highlight the need 
for greater cooperation among practitioners in making data widely 
and openly available. Such cooperation from local to international 
entities will be necessary to modify or grow existing hydrometric 
networks to reduce bias on continental or greater scales. Many areas 
that are under-represented occur in countries that face major eco-
nomic challenges (for example, parts of Africa, Southeast Asia and 
Central and South America). These areas may need financial assis-
tance to improve the gauge network that forms a vital part of their 

water infrastructure. Cooperative solutions to irregular coverage in 
water information systems (for example, the World Bank ‘National 
Hydrology Project for India’) either through greater data accessibil-
ity or alternative gauging solutions could provide the best opportu-
nity to address global water challenges of the future.

Methods
We used an international assemblage of stream gauge datasets and a compilation of 
13 geospatial attributes that span a range of hydrologic, climatic, physiographic and 
socioecological conditions to assess the spatial representativeness of the current 
gauge network (Fig. 1). Our global gauge network contains 32,091 stream gauging 
stations compiled from two global stream gauge datasets: the Global Streamflow 
Indices and Metadata Archive (GSIM18) with additional gauges from a recent 
publication17 that provides daily discharge data for a subset of gauges. Hydrologic 
data were obtained from the GRADES hydrographic dataset15 and include the river 
network, river morphometry and modelled daily discharge from 1979–2013 at 
2,896,897 river segments with drainage areas larger than 25 km2. Here we defined 
‘segments’ as contiguous sections of river between two tributaries or else the 
mouth or origin of the river. Climatic, physiographic and socioecological attributes 
were obtained from the HydroATLAS v1.0 database19, which describes landscape 
characteristics relevant to individual river segments (or reach15). Climatic factors 
included estimates of air temperature and precipitation; physiographic variables 
described river morphometry (stream order, gradient, catchment area); and 
socioecological attributes correspond to various landscape features relevant to 
human impact on rivers (regulation, catchment land cover and a cumulative metric 
of human landscape impact called ‘footprint’) and social well-being (gross domestic 
product). Finally, major freshwater habitat types were quantified according to 
the Freshwater Ecoregions of the World map19,29 to allow for habitat-specific 
analyses. Freshwater Ecoregions of the World delineates the globe into 426 units 
that are 311,605 km2 on average. Units belong to 12 potential habitat types based 
on common attributes of freshwater ‘biomes’. Each biome is characterized by 
the biotic, chemical and physical characteristics of ecoregions as they apply to 
ecosystem dynamics and biodiversity in freshwater systems29.

We combined GRADES and HydroATLAS datasets through geospatial analysis 
performed using the Python GeoPandas library49. Specifically, the middle point of 
each of the 2.9 million GRADES river segments was linked with HydroATLAS by 
finding the nearest HydroATLAS river segments by a radius search of 5 km  
(details in Supplementary Information ‘Geospatial Attributes’). HydroATLAS 
attribute data were then assigned to GRADES river segments and combined with  
GRADES-estimated flow permanence (Supplementary Fig. 2) to provide a full 
accounting of relevant hydrologic (Strahler stream order; flow permanence), 
climatic (air temperature and precipitation, localized to the segment), 
physiographic (upstream catchment area; segment channel gradient) and 
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socioecological (degree of regulation at the segment pour point; cropland and 
urban land use in the upstream catchment; the extent of protected area contained 
within the segment catchment; human population density and human footprint 
in the upstream catchment; sum of the gross domestic product of the upstream 
catchment) conditions for all river segments (Supplementary Table 2). Gauge 
locations were snapped to GRADES river segments by first performing an 
automatic nearest search and then human corrections to identify the segments with 
existing gauge infrastructure (Fig. 1). All global river segments were then assigned 
to one of 11 major freshwater habitat types29 via spatial overlay (polar freshwaters, 
n = 410,501; large river deltas, n = 21,089; tropical and subtropical floodplain 
rivers and wetlands, n = 364,853; montane freshwaters, n = 76,118; temperate 
coastal rivers, n = 282,660; temperate upland rivers, n = 169,271; temperate 
floodplain rivers and wetlands, n = 319,541; tropical and subtropical coastal 
rivers, n = 241,372; tropical and subtropical upland rivers, n = 205,441; large lakes, 
n = 80,244; xeric freshwaters and endorheic basins, n = 715,829).

In addition to the variables provided by HydroATLAS, we investigated patterns 
of flow intermittency, as it is an increasingly common but under-studied aspect of 
global rivers34,50. As a measure of discharge, we estimated flow permanence (that 
is, proportion of gauge record with non-zero flow35) using GRADES simulated 
discharge15 and daily discharge observations from one of the gauge station 
databases that was used in this study17. Note that the GSIM gauge database18 
does not contain daily discharge values that are necessary for this analysis, so 
flow permanence was estimated for all segments based on discharge data from 
17,406 gauges. We also note that GRADES is a modelled daily discharge product, 
so it requires adaptation and acknowledgement of its limitations before it can 
be used to estimate flow permanence: first, GRADES is not free of biases and 
uncertainties according to its evaluation against >14,000 gauges in Lin et al.15; 
second, GRADES was not specifically developed to estimate no-flow occurrence. 
As a result, GRADES rarely estimates a discharge of zero but rather reports a very 
small discharge (for example, 10−2 m3 s−1), which indicates very low flow, possibly 
zero discharge. Therefore, we needed to establish a low discharge threshold for 
GRADES that can be used to categorize whether a river segment is flowing, which 
also addresses the small discharge bias. As there was no pre-established threshold, 
we examined the simulated GRADES discharge when stream gauges reported zero 
flow42. We used the gauge dataset17 to accomplish this task and validated our results 
with measurements from two independent datasets of streamflow observations. 
Of the 17,406 gauges in the flow permanence dataset17, 3,925 gauges contained 
zero-flow observations, yielding a total of 4,680,335 zero-flow observations from 
1979–2013. When gauges reported zero flow, the GRADES simulated discharge 
had a median value of 0.16 m3 s−1 with a first quartile value of 0.028 m3 s−1 and a 
third quartile value of 0.83 m3 s−1 (Supplementary Fig. 3). We used the median 
value to threshold the GRADES discharge, meaning if GRADES simulated a 
discharge below 0.16 m3 s−1, we deemed that this discharge was at zero flow, similar 
to the methods used elsewhere51. We also applied the same technique using the 
first and third quartile discharge values. We then estimated flow permanence 
by calculating the proportion of days from 1979–2013 that a river segment in 
GRADES was estimated to be actively flowing (Supplementary Fig. 2).

We validated the no-flow threshold by examining the timing of no-flow events 
from two other independent observational datasets. The first dataset from Kennard 
et al.52 contains streamflow observations from 830 Australian gauge stations. The 
second dataset, from the US Environmental Protection Agency (USEPA) National 
Aquatic Resource Surveys, contains no-flow observations from 289 sites across the 
contiguous United States53. We removed all observations that (1) were duplicated 
with those in the gauge database17; (2) had drainage areas <25 km2, which is the 
minimum drainage area of the GRADES database and (3) did not fall within the 
time period 1979–2013. We then snapped these no-flow observations to the nearest 
GRADES river network segment using a maximum distance threshold of 500 m. 
Applying these data filters yielded 89,187 no-flow observations from Kennard 
et al.52 and 292 no-flow observations from the USEPA database (Supplementary 
Fig. 3). Using the timing of no-flow events from these two observational datasets 
and applying the non-parametric Mann–Whitney U test, we found that the 
distribution of the means of GRADES simulated discharges at zero flow from 
Kennard et al.52 and the USEPA was not statistically different from that of the 
gauge dataset17 at a 95% confidence level and concluded that our approach is valid 
with an acceptable amount of uncertainty. However, we acknowledge that there 
is uncertainty associated with using gauge data to calculate the GRADES-based 
zero-flow estimates because of the sparsity of gauges relative to the total river 
network length and the demonstrated location bias of the global gauge network.

We quantified the representativeness of the global stream gauge network by 
applying a semi-parametric, permutation-based statistical analysis on the compiled 
global geospatial datasets21. The representativeness of the global gauge network 
refers to the degree to which the statistical distribution of the environmental 
and socioecological attributes captured in the gauge network is similar to the 
statistical distribution of values for all rivers of the world. Representativeness was 
quantified by the 2-Wasserstein distance, which identifies disparities between the 
two distributions20,21. Wasserstein distances are absolute values so the directionality 
of divergence in distributions (whether the disparity was caused by over- or 
under-representation in the sample distribution) was identified using standardized 
bias according to variable means54. Positive values indicated that variables were 

over-represented for river segments containing gauges versus all river segments, 
whereas negative values indicated under-representation. We performed this 
analysis for the globe (less Antarctica and Greenland, which do not host stream 
gauges in this dataset) and for each major freshwater habitat type29.

We conducted simulations to calculate the overall change in global bias in 
gauge placement (averaged across all variables) if a new gauge were installed 
to identify high value locations for potential stream gauge additions. This was 
accomplished by adding a single ‘new’ gauge to each river segment in turn and 
calculating the resulting change in overall average bias across all geospatial 
attributes. This process was then repeated for each river segment currently lacking 
a gauge. This approach results in a ‘bias change’ value for each river segment that 
reflects its individual contribution to global bias if a single gauge were added to 
the network. Negative change in bias indicated that the addition of a gauge on that 
segment would decrease global bias in the gauge network. A positive change in 
bias indicated that global gauge network bias would increase as a result of gauge 
placement on that segment. We mapped the global river network to illustrate 
the contribution of each river segment to improving the representativeness of 
the global river network and identified spatial patterns in contribution to bias 
reduction (Fig. 4).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data from this study are available at https://doi.org/10.17605/OSF.IO/NYA8R.

Code availability
R scripts used in this study are available from the Dry Rivers GitHub page at 
https://github.com/dry-rivers-rcn/G4.
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