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A B S T R A C T

Understanding the combined and separate effects of climate and land use change on the water cycle is necessary
to mitigate negative impacts. However, existing methodologies typically divide data into discrete (before and
after) periods, implicitly representing climate and land use as step changes when in reality these changes are
often gradual. Here, we introduce a new regression-based methodological framework designed to separate cli-
mate and land use effects on any hydrological flux of interest continuously through time, and estimate un-
certainty in the contribution of these two drivers. We present two applications in the Yahara River Watershed
(Wisconsin, USA) demonstrating how our approach can be used to understand synergistic or antagonistic re-
lationships between land use and climate in either the past or the future: (1) historical streamflow, baseflow, and
quickflow in an urbanizing subwatershed; and (2) simulated future evapotranspiration, drainage, and direct
runoff from a suite of contrasting climate and land use scenarios for the entire watershed. In the historical
analysis, we show that ∼60% of recent streamflow changes can be attributed to climate, with approximately
equal contributions from quickflow and baseflow. However, our continuous method reveals that baseflow is
significantly increasing through time, primarily due to land use change and potentially influenced by long-term
increases in groundwater storage. In the simulation of future changes, we show that all components of the future
water balance will respond more strongly to changes in climate than land use, with the largest potential land use
effects on drainage. These results indicate that diverse land use change trajectories may counteract each other
while the effects of climate are more homogeneous at watershed scales. Therefore, management opportunities to
counteract climate change effects will likely be more effective at smaller spatial scales, where land use trajec-
tories are unidirectional.

1. Introduction

Climate and land use (which we define broadly to include land use,
land cover, and land management) are two major drivers of global
hydrological change (Foley, 2005; Steffen et al., 2015; Vörösmarty
et al., 2000). While economic, governmental, and social pressures may
be exogenous to a watershed, land use can be controlled by decision-
making at local levels (individual, city, county, and state). In contrast,

climate change is driven by global emissions and requires a coordinated
effort well beyond an individual watershed to address. Therefore, land
use decisions may be a viable path to mitigating undesirable impacts of
climate change on the water cycle at watershed scales.

While several point-based studies have found significant impacts of
land use change on the water balance (Giménez et al., 2016; Nosetto
et al., 2012; Scanlon et al., 2005; Twine et al., 2004), most watershed-
scale studies report that the impacts of climate change on hydrology
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outweigh those of land use change, particularly where there are strong
changes in precipitation (Arnone et al., 2018; Chawla and Mujumdar,
2015; Jiang et al., 2015; Li et al., 2009; Mango et al., 2011; Pumo et al.,
2017; Tao et al., 2014; Wu et al., 2015; Yang et al., 2017). Thus, there is
a growing acknowledgment that the impacts of land use change are
superimposed on a larger climate trend, and can either amplify or
partially counteract the impacts of climate change (Gyawali et al.,
2015; Juckem et al., 2008; Martin et al., 2017; Shi et al., 2012; Tomer
and Schilling, 2009; Wang and Stephenson, 2018; Zhang et al., 2016).
In particular, land use may be most important locally (Frans et al.,
2013; Haddeland et al., 2007; Peterson et al., 2011; Xu et al., 2013),
during wet/dry extremes (Villarini and Strong, 2014), or where sig-
nificant infrastructure projects (e.g. dams) occur (Wu et al., 2012; Ye
et al., 2003).

However, existing statistical approaches to separate the effects of
climate and land use change have three major limitations. First, existing
statistical methodologies often implicitly treat land use and climate
effects as step-changes by dividing datasets into two or more discrete
time periods (e.g. “before” and “after”) (Gupta et al., 2015; Li et al.,
2009; Tomer and Schilling, 2009; Wang and Hejazi, 2011; Wang and
Stephenson, 2018; Xu et al., 2013; Zhang et al., 2016). This assumption
may be problematic because land use and climate often change con-
tinuously and in tandem, with gradual hydrological impacts (Jiang
et al., 2015; Marhaento et al., 2017). Therefore, there is a need for
improved methods to separate the impacts of climate and land use and
their interactions in a continuous time series of hydrological data.

Second, with some exceptions (e.g. Tao et al., 2014), previous stu-
dies have primarily focused on disentangling the relative importance of
climate and land use on historical streamflow data, particularly Bu-
dyko-based methods which assume that evapotranspiration [ET] is
equal to the difference between precipitation and runoff (Jiang et al.,
2015; Renner et al., 2012; Tang and Wang, 2017; Wang and Hejazi,
2011; Wang and Stephenson, 2018; Xu et al., 2013). In order to ade-
quately understand and address the impacts of climate and land use on
water resources, tools are needed to quantify the impacts of these dri-
vers on the complete water cycle which includes hydrologic fluxes such
as ET, drainage, and runoff.

Third, most existing statistical regression-based approaches rely on
multiple linear regression (MLR) with precipitation and potential ET as
predictors (e.g. Ahn and Merwade, 2014; Huo et al., 2008; Jiang et al.,

2011; Ye et al., 2003; Zhang et al., 2016). This a priori assumption about
relevant variables to hydrological fluxes ignores other potentially im-
portant meteorological drivers, for example vapor pressure deficit, in-
coming solar radiation, and wind speed (Vicente-Serrano et al., 2014;
Zhou et al., 2014; Zipper et al., 2017b). Additionally, MLR assumes no
multicollinearity between input variables, but in reality meteorological
variables may be correlated – for instance, wetter months are often
cooler. Thus, there is a need for approaches which both consider a
greater diversity of potential input variables for regression, while si-
multaneously addressing multicollinearity issues that compromise sta-
tistical predictability. Approaches to transform input data to maximize
variance and orthogonality include (1) principal components regression
(PCR), which maximizes variance of predictor variables; and (2) partial
least squares regression (PLSR), which maximizes the variance of the
predictor variables relative to the response variable (Hadi and Ling,
1998; Hwang and Nettleton, 2003; Wang, 2012; Wolter et al., 2008).
However, these regression models have not been rigorously tested or
intercompared for hydrologic applications.

To meet this challenge, we introduce a new methodological fra-
mework to quantify the impacts of climate and land use change on any
measured or modeled hydrological flux continuously through time.
Using this approach, we demonstrate that PLSR outperforms both PCR
and the more commonly used MLR (differences between these regres-
sion models are described in Section 2.1.3). We then apply this method
to answer the question, to what degree can land use amplify or coun-
teract climate-induced changes to the water balance of a watershed?
Using both historical data and simulated results from diverse future
scenarios for streamflow, ET, drainage, and direct runoff, we provide
insight into the degree to which land use can be used as a local tool to
maintain a watershed within a desired hydrological operating space in
the context of an uncertain future climate.

2. Methodology

2.1. Statistical model description

Our new methodological framework develops statistical relation-
ships between meteorological variables and any hydrological flux (HF)
of interest during a baseline period. These statistical relationships are
then applied to climate data outside of the baseline period, which we

Fig. 1. Flowchart illustrating method for separating land use and climate effects, demonstrating the monthly resolution used in the current study.
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refer to as the prediction period. Predictions are used to estimate the HF
changes resulting from climate change relative to the baseline period at
a monthly resolution, and residuals from predictions are attributed to
land use. A general overview of the method is presented in Fig. 1. The
specific type of regression model used within our methodological fra-
mework may vary; in this study, we compare partial least squares re-
gression (PLSR), principal components regression (PCR), and multiple
linear regression (MLR) models. While the analysis in this study is done
at a monthly timestep consistent with other regression-based studies
separating climate and land use effects (Ahn and Merwade, 2014;
Schottler et al., 2014; Xu et al., 2013; Ye et al., 2003; Zhang et al.,
2016), the method may be applied at other time resolutions as long as
reliable input data and regression relationships can be developed.

We describe this method for a generic HF in the present Section 2.1,
and then separately apply it to historical streamflow data (Section
2.2.2); and simulated future ET, drainage, and direct runoff (Section
2.2.3).

2.1.1. Generating baseline relationships
To estimate the relative contributions of climate and land use to

change in a given HF, a baseline period must be identified from which
relative changes are then calculated. This baseline period should re-
present a period of time in which land use is relatively static, so that
variability in the HF is driven primarily by meteorological processes.
First, we use significance pruning to select predictor variables for the
HF of interest from a suite of candidate predictor variables within the
baseline period. It is important that candidate predictor variables are
(a) available over the entire period of interest; and (b) controlled by
climate, not land use. In our applications (Section 2.2), candidate
variables include a variety of measured and derived meteorological
variables (e.g. precipitation, temperature, reference ET). For each
month, candidate predictor variables were mean-centered and scaled to
a unit standard deviation. We retain the subset of candidate predictor
variables that have a significant linear relationship with the HF (a
significance threshold of p < 0.10 was used to err on the side of
variable retention). Importantly, this approach means that the retained
predictor variables are allowed to differ by each month and HF; for
example, incoming solar radiation may be a more important predictor
for ET than direct runoff.

To avoid potential overfitting and eliminate collinearity between
predictor variables, we use PLSR to transform the retained variables to
factors which we use to predict the HF of interest. To determine the
factors used for regression models, we select factors explaining a cu-
mulative 80% of total variance in the scaled predictor variables. The
selected factors are used as input to a multiple linear regression equa-
tion of the form:

= + ∗ + ∗ + …+ ∗ + εHF C C F C F C FPLSR m y, , 0 1 1,m,y 2 2,m,y n,m n,m,y (1)

where HFPLSR,m,y is the hydrological flux for month m and year y pre-
dicted by PLSR, Cx are regression coefficients, Fx,m,y are factors, and ε is
an error term assumed to be normally distributed and centered on 0. We
use a permutation-based, split-sample approach to estimate model fit
and uncertainty, in which we run the PLSR 250 times randomly sam-
pling 75% of the baseline period for model calibration while retaining
25% for model validation (Zipper and Loheide, 2014). This approach
provides 250 unique sets of regression coefficients for each month and
HF.

2.1.2. Calculating climate and land use contributions to change
The statistical relationships for the baseline period are then applied

to the rest of the hydrological time series (the prediction period). While
both of our applications of the method (Section 2.2) have a baseline
period before the prediction period, this method can also use modern
conditions as the baseline period and apply statistical relationships into
the past, as long as land use in the baseline period is relatively stable.

Using the permutation-based approach described above, we have 250
estimated values of each HF for each year and month within the pre-
diction period.

To separate the relative contribution of climate and land use, we
adopt the common assumption that these two factors can explain all
variability in a given HF relative to the baseline period: climate en-
compasses all changes due to drivers exogenous to the study system (in
our case, the watershed), and land use encompasses all changes due to
drivers endogenous to the study system (Ahn and Merwade, 2014; Duan
et al., 2017; Gao et al., 2016; Huo et al., 2008; Jiang et al., 2011).
Therefore, changes in land management such as irrigation or fertiliza-
tion practices are included in the land use category, while longer-term
climatic oscillations (e.g. PDO, ENSO) would be included in the climate
category.

For each HF, we calculate the total change relative to the baseline
period (ΔHFTotal,m,y) as:

= −ΔHF HF HFTotal,m,y m,y m,baseline (2)

where HFm,y is the measured hydrological flux for month m and year y,
and HFm,baseline is the mean HF for that month during the baseline
period. The total climate contribution to change (ΔHFClimate,m,y) can
then be expressed as:

= −ΔHF HF HFClimate,m,y PLSR,m,y m,baseline (3)

where HFPLSR,m,y is the PLSR-estimated value for month m and year y.
Finally, the land use component of change (ΔHFLU,m,y) is calculated as:

= − = −ΔHF ΔHF ΔHF HF HFLU,m,y Total,m,y Climate,m,y m,y PLSR,m,y (4)

Note that any of the ΔHF variables can be positive or negative,
corresponding to an increase/decrease in that HF relative to the base-
line period. This framework allows us to quantify not just the overall
change relative to the baseline period for each month, but also under
what conditions the effects of land use and climate are antagonistic
(ΔHFLU,m,y and ΔHFClimate,m,y have opposite signs) and under what
conditions the effects of land use and climate are synergistic (ΔHFLU,m,y

and ΔHFClimate,m,y have the same sign).

2.1.3. Comparing among regression models
While the overall methodological framework we introduce in

Sections 2.1.1 and 2.1.2 uses PLSR to generate statistical relationships,
our approach will work with any regression model capable of accu-
rately predicting HF at a monthly resolution. To determine the im-
portance of the choice of regression model, we repeated our analysis
using principal components regression (PCR) and multiple linear re-
gression (MLR) approaches. We conducted this comparison using his-
torical discharge data from the Pheasant Branch subwatershed, which is
described in Section 2.2.2.

When our methodological framework was adapted to use PCR and
MLR regression models, we used the same general approach described
in Sections 2.1.1 and 2.1.2: statistical relationships were generated
between meteorological variables and a response variable for a baseline
period, then applied monthly through time for a prediction period.
Total change was calculated as the difference between a monthly flux
and the mean of the baseline period (e.g. Eq. (2)), changes due to cli-
mate were calculated as the differences between the mean of the
baseline period and each statistically-predicted monthly value (e.g. Eq.
(3), replacing HFPLSR with HFMLR or HFPCR for the MLR and PCR ap-
proaches, respectively), and changes due to land use were calculated as
the difference between total change and changes due to climate change
(e.g. Eq. (4), replacing HFPLSR with HFMLR or HFPCR).

All three regression models used the same significance pruning
approach to select candidate predictor variables (Section 2.1.1), and
therefore these were the same for all methods. To determine the prin-
cipal components (PCs) used for PCR, we selected the PCs explaining a
cumulative 80% of total variance in the scaled predictor variables, as
well as any other PC which has both a significant linear relationship
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with the HF (p < 0.10 as above), and explains> 1% of total variance
in input variables (to avoid spurious correlations), as low-ranked PCs
can be important for PCR (Hadi and Ling, 1998; Jolliffe, 1982). For
MLR, we used the n best predictor variables (as measured by linear R2),
where n is equal to the number of PCs retained in PCR. For all methods,
we calculated model fit using 250 permutations where data were split
into 75% calibration/25% validation samples as described in Section
2.1.1.

2.2. Statistical model application

2.2.1. Study area
We applied the approach described in Section 2.1 to the Yahara

River Watershed (YW; area=1344 km2), Wisconsin, USA (Fig. 2). The
YW is an urbanizing agricultural watershed, and thus is a useful ana-
logue for human-influenced watersheds throughout the US Midwest
and the world (Carpenter et al., 2015b). The water resources of the YW
are stressed by various land use and climatic drivers of change in-
cluding (1) an expanding urban core (Madison, the state capital),
leading to changes to the water and energy balance (Schatz and

Kucharik, 2014; Zipper et al., 2016, 2017b); (2) widespread fertilized
row-crop and dairy agriculture contributing to erosion and nutrient
loading (Carpenter et al., 2015a; Lathrop and Carpenter, 2013; Motew
et al., 2017; Qiu and Turner, 2013, 2015); and (3) a long-term trend of
increasing precipitation with more frequent extreme precipitation
events in recent decades, leading to both groundwater and surface
water issues (Fig. S1; Booth et al., 2016a; Gillon et al., 2016; Usinowicz
et al., 2017). Due to these stresses on the water cycle, improving the
understanding and management of climate and land use effects on
water resources is a key goal cutting across hydrological, ecological,
and social research in the YW (Gillon et al., 2016; Motew et al., 2017;
Qiu et al., 2017, 2018a, 2018b; Wardropper et al., 2015). We separately
investigated the YW’s past (Section 2.2.2) and future (Section 2.2.3) to
quantify how the water cycle of the YW has changed historically and
may continue to change under a variety of future scenarios.

For clarity, throughout the paper the term “discharge” is used to
refer to total streamflow as measured at a gauging station converted to
units of depth after dividing by total watershed area; discharge can be
separated into “quickflow” and “baseflow” components (Schwartz and
Smith, 2014). “Direct runoff” is used to refer to overland flow calcu-
lated at the grid cell resolution from Agro-IBIS output (Section 2.2.3).

2.2.2. Historical discharge analysis
For historical analysis, we focused on the Pheasant Branch

Subwatershed (PBS; 44.24 km2; Fig. 2) which drains the northwest
portion of the YW including parts of the municipalities of Madison and
Middleton. We selected the PBS for detailed analysis because it has the
longest available record of discharge data (1974-present) in the YW
upstream of the chain of lakes (Fig. 2), which buffer the impacts of
climate on streamflow at the monthly scale of analysis used here. Since
1974, there have been well-documented changes in land use (urbani-
zation, including the connection of former internally-drained basins to
the streamflow network), water governance (stringent infiltration re-
quirements for new developments), climate (increased precipitation),
and flood peaks (increasing discharge) (Gebert et al., 2012).

We applied our method using monthly discharge data from the
USGS National Water Information Service gauging station 05427948
(U.S. Geological Survey, 2017) for the period July 1974-December
2016 (a total of 42 years and 6months). We defined the baseline period
as the first half of the available streamflow data (July 1974-December
1995; 21 years and 6months), and the prediction period as the second
half of available discharge data (January 1996-December 2016;
21 years). This breakpoint also roughly corresponds with an observed
shift in historical streamflow beginning in 1993, which has been at-
tributed to increasing precipitation and urbanization within the PBS
(Gebert et al., 2012).

Predictor variables for the PBS were either measured or derived
from the Madison Airport Global Historical Climatology Network-Daily
(GHCN-D) site (USW00014837; 43.14°N, −89.35°E) (Menne et al.,
2012). Directly measured variables were daily precipitation, maximum
temperature, and minimum temperature. Wind speed data was avail-
able for only part of the period of interest, and therefore we used mean
values for a given day of year for the entire period. We estimated vapor
pressure as the saturation vapor pressure at minimum daily tempera-
ture following Allen et al. (1998). We estimated daily incoming solar
radiation using the Bristow-Campbell equation (Bristow and Campbell,
1984), which scales the top-of-atmosphere solar radiation using an es-
timated transmissivity based on daily maximum and minimum tem-
perature, as implemented in the EcoHydRology R package (Fuka et al.,
2014). The Bristow-Campbell equation was calibrated to site conditions
using observed incoming shortwave radiation data from the nearby
Arlington Agricultural Research Station (43.31°N, −89.38°E; http://
agwx.soils.wisc.edu/uwex_agwx/awon) for the period 1986–2016 (Fig.
S2). We calculated daily Penman-Monteith reference ET following the
UN Food and Agriculture Organization method (Allen et al., 1998), and
precipitation deficit as precipitation – reference ET.

Fig. 2. (a) Map of Yahara Watershed showing land use in 2014 at Agro-IBIS
model resolution (220m grid cells). The green dot shows the Pheasant Branch
gauging station, and thick black line outlines the contributing area. (b) Relative
proportion of different land uses in the Yahara River Watershed and Pheasant
Branch Subwatershed. The Agriculture class includes all crops and pasture (top
7 legend entries in panel a). The Urban class includes all urban density levels as
well as barren land. Natural includes forest, grassland, and wetlands.
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We then aggregated daily variables to a monthly set of candidate
predictor variables: cumulative monthly precipitation, reference ET,
and precipitation deficit [mm mo−1]; and mean daily minimum and
maximum temperature [°C], incoming shortwave solar radiation [W
m−2], wind speed [m s−1], relative humidity [%], actual vapor pres-
sure, saturation vapor pressure, and vapor pressure deficit [kPa].
Candidate predictor variables included both the month of interest, as
well as the month of interest plus the preceding 1, 2, 3, 6, and
12months by summing (cumulative variables) or averaging (mean
daily variables). We also included monthly metrics associated with
precipitation intensity, including maximum daily precipitation [mm],
total days with precipitation, and total days with precipitation ex-
ceeding 12.7, 25.4, 50.8, and 76.2 mm (0.5″, 1″, 2″, 3″) which are
becoming more frequently exceeded in the YW recent decades (Gillon
et al., 2016); and metrics allowing for nonlinear responses to pre-
cipitation, including squared monthly precipitation [mm], squared
monthly precipitation deficit, and squared cumulative precipitation
deficit for all lags. In total, there were 79 candidate predictor variables
evaluated for each month. The retained variables for each flux are
shown in Fig. S3.

We also performed a parallel set of analyses for the quickflow and
baseflow components of discharge in the PBS separated using a re-
cursive digital filter (Eckhardt, 2005) within the Web-based Hydro-
graphy Analysis Tool (WHAT; Lim et al., 2005). All other analyses were
repeated as described above using GHCN-D data from the Madison
Airport. These results are presented in the Supplementary Information.

To supplement our permutation-based approach to estimating
model uncertainty, we conducted two additional analysis for historical
discharge in the PBS to quantify the sensitivity of our method to (i) the
selection of a baseline period; and (ii) uncertainty in meteorological
input data. For (i), we repeated all analyses while varying the end of the
baseline period from 1992 to 1998 (1995 +/− 3 years). For (ii), we
repeated our analyses with a baseline period ending in 1995 using
meteorological data from the Arlington Research Farm GHCN-D site
(USC00470308), which is in the northern part of the Yahara River
Watershed. Arlington was missing precipitation data for 478 days
during the study period (a total of 15,525 days), which were gap-filled
using precipitation from the Madison Airport GHCN-D site.

2.2.3. Future scenario analysis
2.2.3.1. Biophysical model description. To investigate the extent to
which climate and land use may impact different components of the
water balance, we simulated a variety of plausible future scenarios for
the YW using Agro-IBIS, a gridded, physically-based dynamic
vegetation model including agroecosystems. Agro-IBIS simulates the
complete carbon, energy, and water cycles (Foley et al., 1996; Kucharik
et al., 2000; Kucharik, 2003; Kucharik and Brye, 2003). Recent updates
to Agro-IBIS replaced the soil physics with those of HYDRUS-1D
(Šimůnek et al., 2013), so that the soil water balance is solved using
the pressure head-based form of the Richards’ Equation (Soylu et al.,
2014); and added erosion and phosphorus cycling, along with a suite of
new land cover types, for the simulation of the YW (Motew et al.,
2017).

In this study, we used the version of Agro-IBIS described in Motew
et al. (2017), which simulates the YW at 220-m×220-m spatial re-
solution. Motew et al. (2017) calibrated and validated the hydrologic
performance of the model via comparison with long-term streamflow
records from six USGS gauging stations within the YW. Sediment/
phosphorus transport and soil phosphorus concentrations were also
validated against measurements. Previous validations of Agro-IBIS in
the YW include comparisons against plot-scale measurements of soil
moisture, soil temperature, leaf area index, aboveground net primary
productivity, drainage, nitrogen cycling, and corn yield (Kucharik and
Brye, 2003; Soylu et al., 2014; Zipper et al., 2015). In the interest of
space, the reader is referred to the publications referenced above for
additional information on the structure and validation of Agro-IBIS for

Fig. 3. Annual watershed-average meteorological (a–d) and land use (e–h)
model input for the four scenarios. In each plot, the gray shading represents the
historical (1986–2013) range. Meteorological variables (a–d) are smoothed
with an 11-year moving average. Plot show (a) annual cumulative precipita-
tion; (b) annual days with>1″ (25.4 mm) precipitation; (c) mean maximum
daily temperature; (d) mean reference ET; (e) percent of domain with corn land
cover; (f) percent of domain with urban (low, medium, and high density) land
cover; (g) percent of domain with deciduous forest land cover; (h) percent of
domain with wetland land cover.
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the YW, though a validation with observations for the PBS is shown in
the SI.

2.2.3.2. Climate and land use scenarios. Four scenarios, each with a
unique climate and land use pathway, were developed to explore
alternative social-political options for human action and socio-
economic development in the YW for 2014–2070. Details of the
storylines and biophysical drivers are presented in Carpenter et al.
(2015b), Wardropper et al. (2016), and Booth et al. (2016b). The use of
stakeholder-driven qualitative scenarios acknowledges the many
potential paths climate and land use may take in the future, rather
than focusing on a single forecasted future, and allow us to explore the
degree to which climate and land use may interact under a variety of
futures (Blöschl and Montanari, 2010).

Each of these four scenarios contains a separate set of land use and

climate input data (Fig. 3), as well as differences in the crop response to
water stress representing agricultural biotechnology improvements.
Full narratives, videos, and other information regarding the scenarios
are provided in the above-referenced publications and at yahara2070.
org. A brief summary of key land use and climate drivers for each of the
four scenarios follows:

Accelerated Innovation (AI) explores a future in which technology is
prioritized as a solution to climate change. Land use is characterized by
expanding urban areas, with a relatively constant agricultural footprint.
Climate change is the least extreme in this scenario, with warming of
∼2 °C by 2070 and more frequent heavy rainfall events.

Abandonment and Renewal (AR) explores a future in which society is
unprepared for climate change. A mass exodus from the YW leads to a
reduction in urban and agricultural land use, and the landscape pri-
marily returns to natural vegetation. Climate change is the most

Fig. 4. Comparison of difference statistical models: (a-b) partial least squares regression (PLSR); (c–d) principal components regression (PCR); and (e–f) multiple
linear regression (MLR) for the Pheasant Branch Subwatershed. Left column shows monthly mean of all validation samples (colored line) compared to measured
discharge (black line). Right column of plots shows annual measured discharge (black line) and mean± 1 standard deviation of predicted discharge (color ribbon).
(g) Shows monthly distributions of observations (white box) and validation samples (colored boxes) for each method. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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extreme in this scenario, with warming of 5.5 °C by 2070 and a period
of extreme heat waves and floods in the 2030s.

Connected communities (CC) explores a future in which sustainability
and community become global priorities. Urban land use stays rela-
tively constant, but agricultural land shifts away from row-crop agri-
culture to pasture and crops used directly as food (e.g. vegetables and
small grains). Climate change in this scenario is intermediate between
AI and AR, with 3.5 °C warming by 2070 and both heavy rainfall and
drought becoming more common.

Nested Watersheds (NW) explores a future in which governance is
focused around national-scale water security. Urban land use remains
relatively constant, but row-crop agriculture decreases as natural eco-
systems are prioritized for water quality protection. Climate in this
scenario is comparable to CC, with 4 °C warming by 2070 and more
frequent precipitation extremes.

We used the approach described in Section 2.1 to evaluate climate
and land use impacts on three HFs: ET, drainage, and direct runoff.
These variables were averaged monthly over all terrestrial grid cells in
the YW based on simulation output from the calibrated Agro-IBIS model
of the YW (Motew et al., 2017). The model was spun-up for 200 years
using randomly selected meteorological years from the 1986–2013
period to equilibrate water, energy, carbon, nitrogen, and phosphorus
cycles. The 1986–2013 period, during which land use and climate were
the same for all scenarios, was used as the baseline period.

For the prediction period (2014–2070), we simulated a factorial
combination of all land use and climate scenarios (16 total simulations)
in order to provide a wide range of scenarios to evaluate interactions
between land use and climate change. We used the same meteorological
predictor variables as in the historical streamflow analysis (Section
2.2.2), though in this case they were watershed averages derived from
spatially variable gridded meteorological input datasets (Booth et al.,
2016b). The retained variables for each HF are shown in Fig. S4. As in

the historical streamflow analysis, we fit the PLSR model using 250
randomly sampled permutations of calibration/validation data which
divide the baseline period into 75%/25% of available years.

For direct comparison with analysis of the PBS, we also extracted
modeled monthly direct runoff for the 1974–2016 period from all grid
cells within the PBS. For the Agro-IBIS spin-up, which includes
1974–1985, spatially distributed precipitation data were not available
so randomly sampled meteorological years from the period 1986–2013
were used. For the 2014–2016 period, climate and land use from the AI
scenario were used, though all scenarios are similar during this period.
Therefore, we used the 1986–2013 period to compare Agro-IBIS’ direct
runoff performance for the PBS with quickflow derived from baseflow
separation, and the entire 1974–2016 period for separation of climate
and land use effects (with a 1974–1995 baseline period, as in the his-
torical analysis).

3. Results

3.1. Historical discharge analysis

3.1.1. Comparison among regression models and validation
While all of the regression models perform acceptably (Nash-

Sutcliffe Efficiency [NSE] > 0; Moriasi et al., 2007) at both monthly
and annual timescales, validation performance of PLSR is superior to
both PCR and MLR (Fig. 4). Notably, PLSR better predicts streamflow
peaks (e.g. 1993), leading to a monthly NSE of 0.716 (compared to
monthly NSE < 0.5 for both PCR and MLR) and annual NSE of 0.878
(compared to annual NSE < 0.7 for PCR and MLR). Furthermore, the
PLSR method is the only statistical method to have a root mean squared
error (RMSE)< 10% of the observed range of variability at either the
monthly or annual resolution. PLSR also has a smaller range of pre-
dictions during both the validation and prediction period than PCR and

Fig. 5. Results from analysis of Pheasant Branch Subwatershed historical discharge data. (a) Comparison between observed and predicted (mean of random vali-
dation samples for all PLSR permutations) for baseline period; (b) boxplots showing monthly distributions of discharge for observed (all years) and predicted (all
years and all permutations); (c) percent of Pheasant Branch Watershed with urban land use (combined high, medium, and low density) from WISCLAND (Wisconsin
Department of Natural Resources, 2016) and NLCD datasets (Fry et al., 2011; Homer et al., 2007, 2015); (d) change relative to baseline period, with solid line
showing overall change and ribbons spanning±1 standard deviation of the mean across all permutations; (e) density plot of mean annual changes in discharge due
to land use, climate, and overall. Legend in (a) also applies to (b) and legend in (d) also applies to (e).
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MLR. However, even PLSR has a tendency to underestimate high
monthly values of discharge (e.g. in the late 1970s), though to a lesser
degree than either PCR or MLR. Based on the results of this comparison,
we elected to use PLSR for the remainder of the analysis presented in
the manuscript.

3.1.2. Climate and land use impacts on discharge
Within the baseline period (1974–1995), the method forces changes

in discharge due to overall, climate, and land use effects to a mean of
0mm, as the baseline period is the datum from which changes are
calculated during the prediction period. During the baseline period,
there is a slight but not significant trend in overall changes in discharge
and climate-induced changes in discharge of 1.6mm yr−1 (p=0.2),
and no trend in land use-induced changes (slope= 0mmyr−1). This
lack of a land use trend during the baseline period indicates that there is
no trend in the residual of the PLSR relationships, lending support to
our baseline period selection.

Within the prediction period (1996–2016), there is a significant
increase in average annual discharge of 57.96mm (p=1e-5; one-
sample t-test) relative to the baseline period (Fig. 5). Of the mean
overall change, climate is a slightly stronger contributor than land use,
though both have significant impacts. Climate change causes a mean
36.94mm increase (p=0.002; 63.7% of overall change), while land
use change contributes a 21.02mm increase (p=0.002; 36.3% of
overall change) relative to the baseline period. However, there is sub-
stantial interannual variability in the relative strength of the two dri-
vers. Overall changes in discharge relative to the baseline period appear
to respond most strongly to climate variability from year-to-year, with a
consistent but low-level positive effect due to land use change (Fig. 5d).
Both climate and land use effects are positive in 17 of 21 years (Fig. 5e).

Quickflow and baseflow contribute approximately equally to the
observed increases in discharge, with a mean annual increase in base-
flow of 28.18mm (p < 0.0001; Fig. S5) and mean annual increase in
quickflow of 29.79mm yr−1 (p= 3e-5; Fig. S6). However, the relative
contribution of land use and climate to these two components of overall
discharge varies. For quickflow, the increase is dominated by climate
(23.53 mm; p=0.002) with a small contribution from land use
(6.27 mm; p= 0.06). In contrast, for baseflow the increase due to land
use is larger (15.51 mm; p=6e-5) than the increase due to climate
(11.26 mm; p=0.007); however, the proportion of total change in
baseflow attributed to land use may be an overestimate due to long
timescales of baseflow response to changes in watershed-scale subsur-
face storage (see Section 4.1).

Using our continuous PLSR-based approach, we also identify
changes through time in the relative contribution of climate and land
use during the prediction period. While discharge is increasing through
time at a rate of 1.2 mm yr−1, this trend is not significant (p=0.2).
This increasing trend is dominated by land use effects (0.79mm yr−1;
p= 0.13), while climate effects are smaller (0.38mm yr−1; p= 0.73).
The prediction period corresponds with a significant positive trend in
the percent of the watershed with urban land use (1.18%/year;
p < 0.05). The trend in discharge is primarily driven by increases in
baseflow, which has positive overall (1.80mm/yr; p= 0.02) and land
use trends (1.15 mmyr−1; p= 0.02) with no significant climate trend
(p=0.31) during the prediction period (Fig. S5). In contrast, there are
no significant quickflow trends for overall, land use, or climate changes
(Fig. S6).

3.1.3. Sensitivity analysis of baseline period
While the results described above use a baseline period of

1974–1995, model performance is good (NSE > 0.59) and comparable
regardless of the baseline period used (Fig. 6a). Validation performance
does increase notably (NSE > 0.68) when 1993, a particularly wet
year, is included in the baseline period, and the highest model skill
occurs with a baseline period end year of 1997 (NSE=0.761). Simi-
larly, the relative importance of land use and climate are comparable

for all baseline periods at both a mean and interannual scale (Fig. 6b
and c). Comparing within the common prediction period (1999–2016),
there are no significant differences between baseline period end years
in PLSR-estimated changes due to either land use or climate change
(Fig. 6b and c).

3.1.4. Sensitivity analysis of input meteorological data
Our results also indicate that the attribution of changes to land use

vs. climate change is relatively insensitive to the choice of input me-
teorological data (Fig. 7). The PLSR models built using either meteor-
ological input dataset are able to accurately predict discharge during
the baseline period, though performance is better with Airport me-
teorological data (NSE= 0.839) than Arlington meteorological data
(NSE= 0.695). Predictions from both input datasets indicate the same
direction of mean annual changes in discharge due to climate for 19 of
the 21 years during the prediction period, with a strong positive cor-
relation (r=0.91) between the two methods. Furthermore, a two-
sample Kolmogorov-Smirnov test indicates that there is not a statisti-
cally significant difference between the distributions of changes due to
climate during the prediction period from the two data sources
(p= 0.987). Overall, differences between PLSR results from the two
input meteorological sources were small, with an annual root mean
squared difference of 25.1 mm (13.4% of total interannual variability).

Fig. 6. Sensitivity of PLSR results for Pheasant Branch watershed to selection of
baseline period. (a) Nash-Sutcliffe Efficiency for the calibration and validation
samples for each baseline period end year. Changes in discharge due to (b) land
use and (c) climate, color-coded by the baseline period end year. All baseline
periods begin in 1974. For results in Fig. 5 and discussed in text, baseline period
ends in 1995 (black line). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3.2. Future scenario analysis

3.2.1. Model validation
When analyzing output from the simulated future scenarios,

monthly PLSR models perform very well, with NSE of 0.983, 0.870, and
0.963 for ET, drainage, and direct runoff, respectively (Fig. 8). RMSE
are 4.60mm (3.6% of range of observations), 4.09mm (5.3%), and
2.30mm (2.8%), respectively. Performance is also strong at an annual
level, with NSE of 0.843, 0.958, and 0.967 for ET, drainage, and direct
runoff. Statistics summarizing overall and monthly fits for each hy-
drological flux are provided in Table S1.

3.2.2. Climate and land use impacts on the water balance
The scenarios generated a wide range of climate and land use model

inputs that exposed the relative impacts of these two drivers under a
variety of conditions, with AI and AR representing the extremes for
most inputs (Fig. 3). For example, while air temperature increased in all
scenarios relative to the historical period, there is ∼4 °C difference
across the four scenarios, with the most extreme increase in AR and the
mildest increase in AI. Similarly, precipitation changes varied across the
four scenarios, with ∼400mm of variability between scenarios; AR had
the most extreme increases in precipitation, particularly during the
2030s. Land use change also varied substantially between scenarios;
row-crop agriculture, for example, was relatively consistent through
time in the AI scenario, but decreased in each of the other scenarios and
was almost completely eliminated by the end of the AR scenario. Urban
land use was highest for the AI scenario, lowest in the AR scenario, and
relatively unaffected in the CC and NW scenarios.

Overall changes in watershed-average ET are uniformly positive
relative to the baseline period across all combinations of scenarios,
ranging from 23.49mm yr−1 to 90.83mm yr−1 over the final two
decades of the simulations (Fig. 9 and 10a). These increases are
dominated by climate effects (24.77mm yr−1 to 70.71mm yr−1), with
a small but typically positive effect of land use (−1.55mmyr−1

to+ 20.12mmyr−1). While climate and land use have synergistic ef-
fects across most scenarios, the effects of land use most strongly
counteract those of climate in the AR scenario. AR is characterized by
decreases in row-crop agriculture and increases in natural vegetation,
while land use effects are closest to 0 in the AI scenario, which is
characterized by widespread expansion of impervious cover. Patterns in
ET through time correspond primarily to changes in temperature and
reference ET. For example, in all scenarios with AI climate ET peaks in
the 2040s, declines through the 2050s to a low in ∼2060, and rises in
the final decade of the simulations (Fig. 9a); this pattern corresponds

with temperature in the AI scenario, which is one of the primary con-
trols on reference ET (Fig. 3). Variability in the predicted land use and
climate effects increase with time through the scenario as climate de-
viates further from the baseline climate used to develop the PLSR re-
lationships, indicating that our permutation-based approach is able to
adequately identify and express uncertainty.

Drainage results have more temporal variability than ET, with
overall mean changes ranging from −142.12mmyr−1 to
65.17mm yr−1 over the final two decades of the simulations (Fig. 9b,
10b). Both climate and land use can have positive effects (increase in
drainage) and negative effects (decrease in drainage), with interannual
variability in drainage corresponding closely to climate. Climate effects
range from −74.58mm yr−1 to 38.00mmyr−1, and land use effects
from −67.55mmyr−1 to 27.17mmyr−1. Unlike ET, however, climate-
driven and land use-driven changes do not have a consistent synergistic
or antagonistic relationship, with a primarily synergistic interaction in
the AI and AR climate scenarios and a primarily antagonistic interaction
in the CC and NW climate scenarios (Fig. 10b). However, this direc-
tional change is not constant through time. Across all scenarios with AR
land use, in particular with AI and AR climate, the effects of land use on
drainage are fairly neutral through the 2030s then positive in the 2040s
and 2050s (Fig. 9b), a period characterized by a decrease in urban land
use and increase in natural vegetation (Fig. 3). While ET seems to be
driven primarily by temperature, changes in drainage respond more to
the relative balance of ET and precipitation. In the AR climate scenario,
changes in drainage relative to the baseline period begin declining from
their peak in the late 2040s, becoming negative in the mid-2050s and
plateauing in ~2060 for the remainder of the simulation. This trend
coincides with a period of decreasing precipitation and increasing re-
ference ET (Fig. 3).

Like ET, direct runoff increases in all future scenarios, with in-
creases ranging from 8.05mm yr−1 to 49.20mm yr−1 over the final
two decades of the scenarios (Figs. 9 and 10c). As with ET, the effects of
climate tend to dominate with land use effects mostly contributing a
small but synergistic increase: climate accounts for -1.24mm yr−1 to
+39.79mm yr−1 of overall changes, compared to 7.20mm yr−1 to
11.47mm yr−1 for land use. Through time, changes in direct runoff
track total annual precipitation, annual extreme precipitation events,
and annual reference ET (Fig. 3a,b,d). For example, in the AR climate
scenarios, changes in direct runoff are largest in the 2030s and 2040s
(Fig. 9c), the wettest period on record which included the largest
number of extreme precipitation days (Fig. 3). In contrast, the NW
climate scenarios have a decline in direct runoff from the 2040s
through the end of the simulation (Fig. 9c) which occurs despite in-
creasing overall and extreme precipitation due to increasing tempera-
ture and reference ET (Fig. 3).

4. Discussion

4.1. Historical changes in discharge

Our results for the PBS indicate that land use contributes to ∼40%
of observed increases in discharge while climate contributes ∼60%,
shedding light on a trend of unknown origin previously documented by
Gebert et al. (2012). Furthermore, our method’s ability to provide
continuous results through time reveals the changing relative im-
portance of these two drivers: land use-induced changes in discharge
are increasing through time at approximately twice the rate of climate-
driven changes. This trend appears to be driven primarily by a strong
trend of increasing urban land cover, with a land use-driven increase in
discharge of 2.12mm for each 1% increase in urban land use within the
PBS.

Disentangling these two drivers, as well as their changes through
time, provides insight into the effects of historical watershed-scale
management decisions. While urbanization-driven increases in dis-
charge are often associated with increased quickflow (Boggs and Sun,

Fig. 7. Sensitivity of attributed changes in Pheasant Branch discharge due to (a)
land use change and (b) climate change to choice of meteorological input data
for generating PLSR relationships. Ribbons show mean±1 standard deviation
from all permutations.
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2011; Debbage and Shepherd, 2018; Rose and Peters, 2001), our results
indicate that increases in quickflow and baseflow are comparable at the
monthly scale (our analysis is done at a monthly timestep and is not
intended to capture effects at the event scale). Moreover, overall and
land use effects on baseflow are increasing through time, unlike
quickflow.

Given that the period of study coincides with an expansion of urban
and impervious cover, the significant effect of land use change on
baseflow, not quickflow, is surprising. While outside the scope of the
present study, we suggest two possible explanations which may be
operating in tandem. First, the observed increase in baseflow may de-
monstrate that strict infiltration requirements for new developments in
the PBS (Ch. 26.06(3), City of Middleton ordinances) are successfully

reducing the impacts of climate change and urbanization on direct
runoff, but are increasing groundwater recharge and baseflow due to
more focused infiltration as well as other potential water sources as-
sociated with urbanization (e.g. urban irrigation and leaky water in-
frastructure). Second, our methodology may be attributing the effects of
long-term increases in groundwater storage to land use change. There is
a long-term increasing trend in groundwater levels of 0.3m decade−1

with substantial variability at yearly to decadal timescales and a non-
linear response of baseflow to water table depth (Fig. S7). Since changes
in storage are endogenous to the PBS and the timescale over which
groundwater storage changes are longer than the maximum timescale
considered in our PLSR relationships (one year), baseflow response to
changes in watershed-scale storage could be methodologically

Fig. 8. Validation of PLSR relationships for (a,b) evapotranspiration, (c,d) drainage, and (e,f) direct runoff.
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attributed to the effects of land use change, which tends to follow long-
term trends but has little interannual variability.

Combined, these results may help guide future management

interventions targeted at buffering the observed changes in discharge,
quickflow, and baseflow associated with urbanization. Infiltration-
based stormwater management (e.g. distributed green infrastructure)

Fig. 9. Changes from 1986 to 2013 baseline period for watershed-average annual (a) evapotranspiration, (b) drainage, and (c) direct runoff. In each set of 16 plots,
the labels along the top show the climate scenario and the labels along the right side show the land use scenario. Ribbons for climate (red) and land use (green)
show±1 standard deviation of the mean across all permutations; lines and ribbons are smoothed using 11-year moving average. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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may have an unintended effect of increasing baseflow, potentially
creating more drought-resistant streams. Given that infiltration-based
stormwater management is also effective at counteracting climate-

induced changes in discharge during extreme events, these practices
may present an opportunity to protect aquatic ecosystems during both
low- and high-flow periods. However, research elsewhere has found

Fig. 10. Density plots showing distribution of overall (black line), climate-induced (shaded red), and land use-induced (shaded green) changes to annual watershed-
average (a) evapotranspiration, (b) drainage, and (c) direct runoff. Distributions are for the final 20 years of the simulation (2051–2070), relative to the baseline
period (1986–2013). In each set of 16 plots, the labels along the top show the climate scenario and the labels along the right side show the land use scenario. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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that reductions in runoff volumes do not always translate to increased
baseflow due to watershed-specific factors such as the amount and
distribution of impervious cover (Fanelli et al., 2017) and enhancing
groundwater recharge using green infrastructure may lower water
quality in surficial aquifers (Andres et al., 2018). This highlights a need
to better understand how land use changes propagate through
groundwater flow systems to impact downstream terrestrial and aquatic
ecosystems (Bhaskar et al., 2016, 2018; Breyer et al., 2018; Jefferson
et al., 2017; Zipper et al., 2017a).

4.2. Future scenario analysis

Results from our factorial set of scenarios indicate that the effects of
climate, not land use change, will likely dominate the future water
balance of the YW. Specifically, ET seems to respond most strongly to
temperature, while direct runoff responds most strongly to precipita-
tion. Climate effects on drainage are driven primarily by the balance of
supply (precipitation) and demand (reference ET). As precipitation
projections have considerably less certainty than temperature projec-
tions (WICCI, 2011), this makes understanding the impacts of climate
and land use change on surface water and groundwater resources par-
ticularly challenging. In fact, the similarity of predicted land use effects
between different land use scenarios for a given climate (e.g. columns in
Figs. 9 and 10) indicates that errors in the PLSR relationships used to
calculate changes due to climate may be larger than the effects of land
use change.

While the effects of land use are smaller than those of climate,
several key patterns and interactions with climate emerge. Fluxes oc-
curring at the land surface (ET and direct runoff) tend to have sy-
nergistic relationships between climate and land use change, with cli-
mate-driven increases constituting the majority of overall change. In
contrast, drainage has a mix of synergistic and antagonistic relation-
ships and the largest land use effects of any of the fluxes studied, ex-
ceeding 50% of overall change in some scenarios. This indicates that,
while the effects are relatively small, land use changes can act as a
buffer on drainage from climate change at a watershed scale. While
groundwater recharge is typically thought of as beneficial, excess
groundwater can have negative effects on several ecosystem services
including reductions in flood retention capabilities, risk of basement
flooding in urban areas, and decreases in agricultural productivity as-
sociated with oxygen stress (Booth et al., 2016a). It is therefore critical
to consider the implications of either an increase or decrease in wa-
tershed-scale drainage for groundwater flow and associated ecosystems
when making land use decisions.

Additionally, the AI land use scenario (characterized by urbaniza-
tion) and AR land use scenario (characterized by a return to natural
ecosystems) consistently have the most extreme impacts on the water
balance. Across all scenarios, AI has the smallest effect on ET and
drainage, but the largest effect (most negative) on direct runoff. In
contrast, AR has the largest effect on drainage (most positive) and ET
(most negative), and among the smallest effects on direct runoff. This
highlights the important role of land use in determining the partitioning
of water at the land surface and in the root zone.

4.3. Synthesis and management implications

Both the historical discharge analysis in the PBS and the future
scenario analysis of the YW indicate that climate is the key control over
the water balance, though the analyses differ in the relative importance
of land use. In the PBS, results indicate that climate change contributes
to ∼60% of observed changes in discharge, with approximately equal
impacts on quickflow and baseflow, though the effects of land use are
increasing through time. Similarly, the simulated future scenario ana-
lysis points to climate as the key control over direct runoff (as well as
ET and drainage), with relatively smaller effects of land use. To better
assess potential causes of these differences, we extracted Agro-IBIS

direct runoff output from the Pheasant Branch portion of the YW and
repeated all analyses for the common period of record (1974–2016).
While the baseline period data differs between the two analyses due to
different meteorological input data in the 1974–1985 period (see sec-
tion 2.2.3.2), results for the overall degree of change are comparable.
Results from historical analysis of the Agro-IBIS output for Pheasant
Branch (Fig. S8) finds that 52.3% of the overall changes in direct runoff
during the prediction period result from climate and 47.7% result from
land use (compared to 79.0% climate and 21.0% land use for quickflow
estimated from baseflow separation; Fig. S6). Also similar to the results
from baseflow separation, there is no significant trend through time for
overall, land use, or climate-induced changes in Agro-IBIS direct runoff
for the portion of the prediction period with real climate inputs
(1996–2013).

This analysis indicates that the differences between the historical
discharge analysis and the future scenario analysis is driven by several
factors. First, the degree and trajectory of land use change varies be-
tween the spatial scales used for the two analyses. The PBS is sig-
nificantly smaller than the YW (∼3% of the YW) and has experienced
relatively unidirectional land use change (urbanization) during the
historical period (Fig. 5c). In contrast, the future scenarios include a
large variety of contrasting land use changes which may counteract
each other when aggregated to the watershed scale. The stronger land
use signal in the PBS relative to the YW implies that, just as the impacts
of climate change on streamflow are attenuated in larger river networks
(Chezik et al., 2017), so too can larger spatial scales attenuate the ef-
fects of land use change. Second, climate change during the future
scenario analysis (2–5.5 °C warming) is more extreme than has been
observed in the historical record. Third, our biophysical modelling
approach may underestimate differences in hydrological properties
between land uses (see Section 4.4).

While our analysis agrees with recent work showing that climate
effects may dominate future hydrological changes (Martin et al., 2017;
Peng et al., 2016; Pribulick et al., 2016; Wang et al., 2017), we also
highlight the critical need to target land use interventions locally to
maximize benefits in areas of concern (Fry and Maxwell, 2017;
Schifman et al., 2017). The results presented for the YW average hy-
drologic response over an area of 1344 km2, and therefore neglect
spatial heterogeneity in land use which can impact the local water cycle
(Deshmukh and Singh, 2016; Frans et al., 2013; Haddeland et al., 2007;
Wang and Stephenson, 2018). As observed in the historical discharge
analysis, local management interventions can impact hydrological
processes at a nearly comparable level to climate change.

Elsewhere, previous work has shown, for example, that the expan-
sion of biofuel cropping systems can change ET (Harding et al., 2016;
Joo et al., 2017; VanLoocke et al., 2010; Wagner et al., 2017); land use
change can either reduce or increase groundwater recharge (Giménez
et al., 2016; Newcomer et al., 2014; Oliveira et al., 2017; Qiu and
Turner, 2015; Robertson et al., 2017; Zipper et al., 2017a); and urban
green infrastructure and agricultural drainage management can suc-
cessfully reduce runoff volumes (Allred et al., 2003; Elliott et al., 2016;
Schott et al., 2017; Shuster et al., 2017; Wadzuk et al., 2010). Each of
these represents a management practice that can alter a hydrologic flux
of interest in the context of climate change which may have significant
local benefits.

5. Methodological strengths and limitations

While statistical regression techniques have previously been used to
separate the impacts of climate and land use on streamflow (Section
2.1), our technique has several novel contributions. First, users of re-
gression-based methods typically divide their data into two discrete
chunks (“before” and “after”) and separate the temporally-averaged
land use and climate impacts using residuals from the “after” period. In
reality, of course, both land use and climate change are rarely step
changes, but rather shift gradually over time. While the approach
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introduced here uses a baseline period, it also provides continuous es-
timates of the relative importance of land use and climate change over
time during both the baseline and prediction period, which makes it
possible to identify trends in drivers of hydrological change. For ex-
ample, in the PBS, we reveal that the impacts of land use change are
increasing over time for both discharge and baseflow; while climate
change has significantly increased streamflow but there is no significant
trend during the prediction period. Second, the continuous separation
through time makes it possible to assess synergistic and antagonistic
relationships between climate and land use, as well as the changing
nature of these interactions through time. Third, as opposed to MLR
which is frequently used to separate land use and climate change effects
(Huo et al., 2008; Jiang et al., 2011; Ye et al., 2003; Zhang et al., 2016),
we use a PLSR model and evaluate its performance relative to MLR and
PCR model. Our PLSR approach relies on automated significance-
pruning to select predictor variables from a set of candidates, thus re-
ducing potential spurious correlations and potential researcher biases,
and eliminated issues associated with collinearity to provide more ro-
bust predictions (Hwang and Nettleton, 2003).

We do, however, note several potential limitations to our method,
most of which are common to all statistical approaches for separating
climate and land use change. For instance, developing statistical re-
lationships based on one period of time and applying them to another
may result in extrapolation beyond the climatic conditions for which
the relationships are well-suited. This problem is common to all re-
gression-based methodologies and may be particularly challenging in
the context of nonstationarity, where emergent properties of the re-
lationship between climate and land use change lead to novel future
responses (Milly et al., 2008), or where significant changes in wa-
tershed storage occur (e.g. rising groundwater levels as discussed in
Section 4.1). In our case, sensitivity analysis results demonstrate that
separation of climate and land use effects is relatively insensitive to the
selection of the baseline period and meteorological input data, as long
as the performance of the PLSR model is validated and demonstrated to
accurately reproduce observations, thus minimizing concerns regarding
nonstationarity. However, alternate approaches to selecting model ca-
libration periods may provide a useful approach to baseline period se-
lection (Razavi and Tolson, 2013), and using a permutation-based ap-
proach to fitting models allows us to identify and visualize increases in
uncertainty during climate conditions outside the range of the baseline
period (e.g. Fig. 9). Additionally, regression-based approaches assume
that climate and land use have linearly additive effects (e.g. Eq. (4));
however, due to the complexity of socio-environmental systems, non-
linear hydrological responses to climate and land use change may
violate this assumption (Krause et al., 2017). Thus, regression-based
methodologies may be less accurate when nonlinear behaviors are
present, and process-based models may be more effective (Pribulick
et al., 2016; Pumo et al., 2017).

Furthermore, while Agro-IBIS is a state-of-the-art dynamic vegeta-
tion and agroecosystem model, some land use characteristics which
may impact the water cycle are not represented. For example, changes
in soil hydraulic properties between land uses and through time are not
simulated (Paturel et al., 2017), nor are soil hydraulic properties cou-
pled to soil organic content (Ankenbauer and Loheide, 2017). Im-
proving parameterizations and including these processes would likely
increase the simulated differences between land use types in the future
scenario analysis and increase the relative importance of land use. Our
statistical relationships also do not take into account other factors
which may drive changes in the water balance; for example, each sce-
nario has a representative atmospheric CO2 concentration pathway
(Booth et al., 2016b). Given that carbon and water cycles are coupled in
Agro-IBIS via stomatal conductance, CO2 may also be a relevant pre-
dictor variable, particularly for ET and under conditions with sig-
nificant land use change between C3 to C4 vegetation (Twine et al.,
2013). While our methodological framework is sufficiently flexible to
include variables such as CO2, we elected to exclude it from analysis in

order demonstrate our methodology using easily obtained meteor-
ological data.

6. Conclusions

This study introduces a new methodological framework to separate
the effects of climate and land use on the water cycle continuously
through time. We tested this approach using three different regression
models (PLSR, PCR, and MLR) and found the best performance with
PLSR. We then applied our approach to both observed and modeled
data for the YW in south-central Wisconsin. Analysis of historical dis-
charge data for the PBS indicated that climate change has caused
∼60% of the observed changes in discharge over the past two decades,
with a significantly increasing impact of land use change (urbanization)
on both baseflow and overall discharge. Using a factorial combination
of four contrasting land use and climate scenarios, we show that future
changes in the YW’s land surface water balance (ET, drainage, and di-
rect runoff) are likely to be dominated by effects of climate change: ET
was most affected by changes in temperature, direct runoff by changes
in precipitation, and drainage by changes in both precipitation and
reference ET. Land use effects were larger on drainage than either ET or
direct runoff.

Overall, these results indicate that the effects of land use and cli-
mate are not static through time, and separating the relative con-
tribution of these two variables to hydrological change should not be
done via the simple separation of time into discrete periods; rather, it
must be done in a continuous manner. Furthermore, we show that using
land use to mitigate the effects of climate change on the water cycle
may be challenging in large watersheds which contain a diversity of
land use trajectories. However, our results indicate that the effects of
land use change are larger in the PBS than the YW as a whole due to the
relatively monodirectional land use change from agriculture to urba-
nization. Therefore, local management interventions targeted at sub-
watershed scales to achieve specific desired outcomes may be an ef-
fective path forward to protecting water resources from future climate
change.
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