
1. Introduction
Groundwater is an essential contributor to streamflow around the world (Beck et al., 2013), providing a 
relatively cool and stable supply of water particularly during dry periods. Groundwater inflow to streams 
(“baseflow”) is essential for a number of aquatic and groundwater-dependent ecosystems (Larsen & Woelf-
le-Erskine, 2018; Rohde et al., 2017). However, groundwater abstractions can lead to reductions in stream-
flow (“streamflow depletion”) via the capture of discharge, which includes interception of water which 
otherwise would have discharged into a stream or, in extreme cases, induced infiltration from a previously 
gaining stream (Barlow et al., 2018; Bredehoeft, 2002; Bredehoeft et al., 1982).

Streamflow depletion cannot be directly observed and is often difficult to estimate due to complex ground-
water flow systems, lag times between pumping and streamflow reductions, and natural variability in 
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Plain Language Summary Estimating the impacts of groundwater pumping on streamflow 
(“streamflow depletion”) is challenging but essential for effectively managing water resources. In this 
study, we test a low-cost, low-effort approach (called an “analytical depletion function”) to estimate 
streamflow depletion by comparing it to a more complex tool that is currently used for water management 
in a heavily irrigated setting in the central US. We find that there is general agreement between the 
analytical depletion function and the more complex approach. We also test whether analytical depletion 
function performance is better or worse for different conditions and find that performance is similar 
regardless of pumping rate but very sensitive to properties of the subsurface. Overall, our results indicate 
that analytical depletion functions could be useful tools for estimating streamflow depletion where more 
complex approaches are unavailable, but having accurate data about the subsurface is essential.
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streamflow resulting from other processes such as weather, water control structures such as dams, and 
surface water withdrawals (Barlow & Leake, 2012). For this reason, numerical models (e.g., MODFLOW; 
McDonald & Harbaugh, 1988), which are physics-based simulations of groundwater flow processes, are 
the typical approach for streamflow depletion and conjunctive groundwater-surface water management 
(Barlow & Leake, 2012; Fienen et al., 2018). However, there are large time, effort, and computational costs 
associated with numerical models (Fienen et al., 2015, 2016). Numerical models are, therefore, not available 
in most settings.

In locations where numerical models are not available, analytical models are often used instead (Hamilton 
& Seelbach,  2011; Huang et  al.,  2018). Analytical models are simpler representations of stream-aquifer 
interactions, but contain many limiting assumptions such as one (or occasionally two) streams, homogene-
ous subsurface conditions, and simplified stream and aquifer geometry. While analytical models have been 
proposed that account for some of these assumptions (Butler et al., 2007; S. K. Singh, 2009; Yeh et al., 2008; 
Zlotnik & Tartakovsky,  2008), most real-world environments violate the core assumptions of analytical 
models including settings where there are multiple and/or sinuous streams.

Recently, analytical depletion functions (Figure 1) have been proposed as a potential extension of existing 
analytical models which empirically address some of these limitations for use in complex, real-world set-
tings (Zipper, Gleeson, et al., 2019). An analytical depletion function consists of (i) stream proximity criteria, 
which identify the streams that may be affected by a well; (ii) a depletion apportionment equation, which 
calculates how depletion from a single well should be allocated to multiple stream segments meeting the 
stream proximity criteria; and (iii) an analytical model, which estimates depletion in each stream segment 
meeting the proximity criteria.

To date, analytical depletion functions have only been subjected to limited testing in a small number of 
study domains. All of these evaluations have compared analytical depletion functions to numerical model 
results because it is not possible to estimate regional-scale, segment-resolution streamflow depletion us-
ing observational data (Barlow & Leake, 2012). During the development of the State of Michigan's Water 
Withdrawal Assessment Tool, Reeves et al. (2009) compared nine different depletion apportionment equa-
tions for a small watershed in Michigan and found that an inverse distance-based approach best matched 
output from a MODFLOW numerical model. Subsequently, Zipper, Dallemagne, et  al.  (2018) evaluated 
five depletion apportionment equations for several real-world stream networks in British Columbia, find-
ing that a new inverse distance-based approach which considers stream geometry (called web squared; 
Figure 1b) performed the best under steady-state conditions. Zipper, Gleeson, et al. (2019) introduced the 
concept of stream proximity criteria (Figure 1a) and performed a sensitivity analysis to 50 combinations of 
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Figure 1. Components of an analytical depletion function: (a) stream proximity criteria, which identify stream 
segments that may be affected by a well; (b) a depletion apportionment equation, which divides streamflow depletion 
caused by the well among affected segments; (c) an analytical model, which calculates the depletion in each individual 
stream segment. Modified from Zipper, Carah, et al. (2019) under CC-BY 3.0 license.
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stream proximity criteria, depletion apportionment equation, and analytical model, finding that analytical 
depletion functions were able to accurately estimate the distribution and magnitude of streams affected by 
a well. However, Zipper, Gleeson, et al.  (2019) compared analytical depletion functions to an archetypal 
numerical model with several simplifications including a homogeneous subsurface and stream properties. 
Q. Li et al. (2020) conducted the first comparison of analytical depletion functions to a calibrated numerical 
model for two regions in British Columbia, but this was in unstressed conditions with only a single well 
pumping at any given time and did not evaluate different analytical depletion function formulations.

As a result, it remains unknown whether analytical depletion functions are suitable tools for heavily stressed 
aquifers with significant ongoing pumping, particularly since evidence indicates that cumulative impacts of 
multiple wells may not be linearly additive (Ahlfeld et al., 2016). Furthermore, the degree to which well and 
hydrostratigraphic characteristics influence the performance of analytical depletion functions has not been 
previously evaluated. Thus, the ability of analytical depletion functions to predict streamflow depletion 
in complex, heterogeneous, and highly stressed real-world settings where cumulative impacts of multiple 
wells are occurring simultaneously remains unknown. In this study, we address this knowledge gap by com-
paring a suite of analytical depletion functions to a calibrated groundwater model of the Republican River 
Basin (USA) which is currently used for conjunctive water management (RRCA, 2003). Specifically, we ask:

 (1)  Do analytical depletion functions estimates of streamflow depletion in a complex, highly stressed, un-
confined aquifer agree with an existing calibrated numerical model?

 (2)  How does agreement between analytical depletion functions and the numerical model vary as a func-
tion of analytical depletion function formulation, hydrogeological properties, stream properties, land-
scape attributes, and time of year?

Answering these questions will enable further use and development of analytical depletion functions as a 
real-world water management tool.

2. Methods
This study focused on a comparison between the analytical depletion functions and a calibrated numerical 
model because it is not possible to obtain regional-scale, segment-resolution streamflow depletion estimates 
from observational data (Barlow & Leake, 2012). At the scale of an individual stream segment, analytical ap-
proaches can be evaluated via controlled field experiments (Hunt et al., 2001; Kollet & Zlotnik, 2003). How-
ever, at large spatial scales, streamflow depletion is obscured by variability in weather, lag times between 
pumping and depletion, and other management activities such as surface water withdrawals (Gleeson & 
Richter, 2018), and therefore calibrated numerical models are the preferred approach to quantify stream-
flow depletion (Barlow & Leake, 2012).

2.1. Republican River Compact Administration Groundwater Model

The Republican River Watershed drains approximately 64,500 km2 (24,900 mi2) of the US High Plains, 
flowing through Colorado, Nebraska, and Kansas (RRCA, 2003). There is significant irrigated agriculture 
within the watershed (Deines et al., 2017, 2019) and, as a result, the surface and groundwater resourc-
es in the Republican River Watershed and surrounding High Plains Aquifer are heavily stressed (Butler 
et al., 2018; Haacker et al., 2016). To allocate and manage the water of the Republican River, the three states 
entered into the Republican River Compact in 1942 (Khan & Brown, 2019). Following a US Supreme Court 
decision in 2002, representatives from Kansas, Nebraska, Colorado, the US Bureau of Reclamation, and the 
US Geological Survey collaboratively constructed the Republican River Compact Administration (RRCA) 
groundwater model as a tool for quantifying streamflow depletion caused by groundwater pumping. The 
model is updated annually to guide water allocations among the three states. The model is described in 
detail in RRCA (2003), and all model files are available on the RRCA website (https://www.republicanri-
vercompact.org/). We selected this numerical model for use in our study because it is an existing calibrated 
decision support tool for a complex conjunctive water management decision-making in a heavily irrigated 
setting and has been deemed to produce acceptable estimates of streamflow depletion by a group of state 
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and federal scientists, engineers, and water managers (RRCA, 2003). Since the numerical model we use 
was calibrated to reproduce historical changes in baseflow by regional experts (described below), it repre-
sents the best available regional estimates of streamflow depletion, and has been widely used for previous 
scientific studies (de Graaf et al., 2019; Hrozencik et al., 2017; Hu et al., 2015, 2017; Mulligan et al., 2014; 
Ou et al., 2018).

The RRCA model spans an area larger than the Republican River watershed and is bounded by the Platte 
River in the north and outcrops of the High Plains Aquifer on the east, west, and south. The model is 
constructed using MODFLOW-2000 (Harbaugh et al., 2000) covering a total active domain of 77,868 km2 
(30,065 mi2), which is discretized into 2.6 km2 (1 mi2) grid cells. The model is updated annually with each 
year's estimated pumping data submitted by each state. Here, we use version 12p, which is the version 
originally released that spans the period 1918–2000 at a monthly timestep. While the High Plains Aquifer in 
this region is unconfined, the RRCA model assumes constant transmissivity to improve model stability. To 
appropriately represent unconfined aquifer storage properties with a confined parameterization, the RRCA 
calculates specific storage for each grid cell as the estimated specific yield divided by saturated thickness in 
each grid cell (RRCA, 2005).

The model represents surface water features using a combination of three MODFLOW packages (Figure 2; 
Figure S1): the stream package (STR), which is used for the Republican River and tributaries and allows 
stream cells to dry in response to pumping; constant head boundaries (CHBs), which are used for the Platte 
River at the north edge and the eastern edge of the model; and the drain package (DRN), which represent 
springs and are primarily along the southeastern portion of the domain. Direct uptake of groundwater 
by phreatophytes is represented using the evapotranspiration (EVT) package and primarily occurs in cells 
along stream channels with shallow groundwater. There are a total of 9,372 pumping wells in the domain, 
each of which has a monthly pumping schedule, and pumping primarily occurs during the June–September 
growing season (Figures S2 and S3).

The model was calibrated via comparison to groundwater levels (350,233 records from 10,835 locations, 
with more focus on wells with a longer period of record) and baseflow (65 analyses in which baseflow 
was manually separated from daily streamflow using the pilot point method by the model development 
team) for the historical pumped period. Hydraulic conductivity and precipitation recharge rates were the 
primary calibration parameters. Since the calibration period included the expansion of pumping across 
the watershed, calibrating to baseflow across the historic period provides confidence that the model is able 
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Figure 2. (Left) Map showing Republican River Compact Administration MODFLOW model domain, 
hydrostratigraphic properties, and selected pumping wells for pumping experiment. log(Trans) is log-10 transformed 
transmissivity. (Right) Properties of wells sampled for pumping experiment, which are described in detail in 
Section 2.3.1 of the text.
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to simulate the response of groundwater-surface water interactions to groundwater pumping. Complete 
calibration results are available at the RRCA website for baseflow (https://www.republicanrivercompact.
org/v12p/html/ch07.html) and groundwater levels (https://www.republicanrivercompact.org/v12p/html/
ch08.html). Since baseflow is the more relevant calibration target for our investigation, we included several 
calibration scatterplots in the supplemental information (Figures  S4–S6). There tends to be more vari-
ability in performance in smaller tributaries compared to the Republican River main stem. Fit between 
observations and predictions was evaluated by experts from the model development team, which was made 
up of representatives from each of the affected states and the federal government, and deemed to be ac-
ceptable for water allocation decisions related to streamflow depletion based on professional judgment, 
though no fit statistics were presented in model documentation due to the complexity of the model domain 
(RRCA, 2003).

2.2. Analytical Depletion Functions

Analytical depletion functions are described in detail in Zipper, Gleeson, et al. (2019), so only a brief over-
view is presented here. Analytical depletion functions consist of three components (Figure 1):

 (i)  Stream proximity criteria, which identify the stream segments that may be depleted by a well as a sub-
set of the total stream network

 (ii)  A depletion apportionment equation, which calculates the fraction (fi) of the well’s total depletion that 
is sourced from each stream segment (i) meeting the stream proximity criteria. For each well, fi of all 
stream segments must sum to 1.0

 (iii)  An analytical model, which calculates the streamflow depletion for each stream segment without con-
sidering other stream segments (Qai). The calculation of Qai follows the typical use of analytical mod-
els which assume infinite stream length

For that well, the estimated volumetric streamflow depletion in each segment, Qsi, is then calculated as, 
Qsi = fi × Qai.

The inclusion of stream proximity criteria and depletion apportionment equations in analytical depletion 
functions are intended to empirically account for two major limitations of analytical models: analytical 
models typically only include one or a limited number of streams and do not address stream sinuosity. De-
pletion apportionment equations that subdivide stream segments into multiple points, such as the web and 
web squared approaches developed by Zipper, Dallemagne, et al. (2018), approximate the integral of stream-
flow depletion along a stream segment of finite length, which addresses the problematic analytical assump-
tion of infinite stream length (Kollet et  al.,  2002). However, analytical depletion functions still include 
many of the assumptions of analytical models, one of which is that pumping does not cause any changes 
in capture (groundwater recharge or discharge) apart from streamflow depletion (Barlow & Leake, 2012; 
Bredehoeft, 2002; Bredehoeft et al., 1982).

Numerous options exist for stream proximity criteria, depletion apportionment equations, and analytical 
models. These components were systematically evaluated in Zipper, Gleeson, et al. (2019) via comparison 
to an uncalibrated numerical model of the Navarro River Watershed (California, USA). Zipper, Gleeson, 
et al. (2019) found that analytical depletion function performance was most sensitive to the choice of deple-
tion apportionment equation, secondarily sensitive to the choice of stream proximity criteria, and relatively 
insensitive to the choice of analytical model.

In this study, we will compare a subset of 8 of the 50 analytical depletion functions evaluated by Zip-
per, Gleeson, et al.  (2019). Since Zipper, Gleeson, et al.  (2019) found the greatest sensitivity of model 
performance to the choice of depletion apportionment equation, we compared four unique but related 
depletion apportionment equations here: web and web squared, which were the two best-performing 
equations for the Navarro River Watershed, CA (Zipper, Gleeson, et al., 2019); and inverse distance and 
inverse distance squared, the former of which was the best-performing equation for the Kalamazoo Val-
ley, MI (Reeves et al., 2009). All four depletion apportionment equations can be expressed as:
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The result, fi, is the fraction of total depletion occurring in stream segment i. Required inputs include d, the 
distance from the well to the stream segment; w, a weighting factor that is equal to 1 for inverse distance and 
web and equal to 2 for inverse distance squared and web squared; n is the total number of affected stream 
segments identified by the stream proximity criteria (turquoise lines in Figure 1b); and P is the number of 
points each stream segment is divided into (black dots in Figure 1b). The inverse distance and inverse dis-
tance squared methods are simplified formulations of Equation 1 where only the closest point to the well 
on each stream segment is used and therefore P = 1.

Since stream proximity criteria were of secondary importance, we compared two stream proximity criteria: 
adjacent catchments only, which was used by Reeves et al. (2009), and adjacent + expanding, which Zipper, 
Gleeson, et al. (2019) found worked best in the Navarro River Watershed. The adjacent + expanding meth-
ods includes both adjacent catchments to the well and any catchments in which the estimated streamflow 
depletion would be greater than or equal to 1% of the pumping rate at a given timestep. As a result, the 
number of stream segments meeting the stream proximity criteria for a given pumping well increases with 
the time since the onset of pumping.

We tested a single, relatively simple Glover and Balmer (1954) analytical model (herein referred to as the 
Glover model; Equation 2):
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In Equation 2, Qw is the pumping rate of the well; S is the storativity, typically specific yield for unconfined 
aquifers; T is the transmissivity; and t is the time since pumping began. To account for monthly variation 
in Qw, we used superposition techniques to turn the wells on and off (Jenkins, 1968). The Glover model 
contains numerous simplifying assumptions which are violated in the RRCA domain, including a stream 
fully penetrating to the bottom of the aquifer, a single linear stream, an aquifer of infinite extent extending 
away from the stream, and no changes in transmissivity in response to pumping. Since Zipper, Gleeson, 
et al. (2019) found minimal sensitivity to the choice of analytical model and the RRCA MODFLOW model 
represents surface water using a mixture of packages, some of which do not include streambed conduct-
ance as an input which is required for more complex analytical models such as Hunt (1999), we did not test 
multiple analytical models in this study. However, many analytical models exist with different formulations 
(reviewed in Huang et al., 2018) and in other hydrogeological settings, different analytical models may be 
appropriate.

2.3. Analytical Depletion Function Performance Evaluation

2.3.1. Selecting Pumping Well Sample

The goal of our study is to examine the performance of analytical depletion functions relative to a MOD-
FLOW model over a range of hydrogeological and physiographic characteristics. Therefore, we selected a 
subset of 166 wells (of 9,372 total pumping wells in the domain) based on the following characteristics: (i) 
the mean pumping rate, (ii) predevelopment water table depth from MODFLOW steady-state output, (iii) 
the transmissivity of the MODFLOW cell containing the well (log-transformed), (iv) the storativity of the 
MODFLOW cell containing the well, (v) the distance from the well to the closest surface water feature (ac-
tive STR, DRN, or CHB grid cell), and (vi) the distance from the well to the closest cell with potential phrea-
tophytic ET (active EVT cell). The distribution of these properties among our experimental sample is shown 
in Figure 2 and the distribution among all wells is shown in Figure S7. To span each of these characteristics 
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as uniformly as possible, we used the Latin Hypercube Sampling method (McKay et al., 1979) to random-
ly sample 250 parameter combinations spanning these six characteristics (Zipper, Lamontagne-Hallé, 
et al., 2018). We then selected the pumping well that had the shortest euclidean distance in parameter space 
to each parameter sample, resulting in a total of 166 unique pumping wells in our final evaluation because 
some wells were closest to multiple samples. Several of the selected wells are spatially close to each other 
because they are in locations that have relatively rare parameter conditions within the multidimensional 
parameter space, such as high distance to water (Figure S7), and therefore, multiple nearby wells were se-
lected to effectively sample a wide range of parameter combinations.

2.3.2. Calculating Streamflow Depletion in MODFLOW Model

To calculate the streamflow depletion associated with each of these pumping wells in the MODFLOW mod-
el, we first ran a baseline RRCA simulation to calculate the stream-aquifer flux under baseline conditions 
for each cell containing a surface water feature. The cell-resolution stream-aquifer fluxes were then aggre-
gated to net stream-aquifer fluxes for each stream segment, which were defined (for the STR package) or 
manually delineated based on stream network geometry (for the DRN and CHB packages). Since many of 
the DRN cells were discontinuous (Figure 2) and represent springs or seeps rather than stream channels, 
each DRN segment was delineated as a cluster of nearby DRN cells. To evaluate the sensitivity of the cal-
culated performance metrics to the inclusion of these features, we performed analytical depletion function 
calculations both including and excluding DRN cells. We then turned off each of the selected wells one-at-
a-time for 166 unique numerical experiments (which we refer to as “pumping simulations” herein) and cal-
culated the net stream-aquifer flux for each stream segments in each pumping simulation. Turning off each 
well one-at-a-time and comparing to the baseline simulation isolates the amount of streamflow depletion 
caused by that specific well. Quantitatively, the decrease in stream-aquifer flux in the baseline simulation 
relative to a pumping simulation is equal to the streamflow depletion caused by that pumping well (and po-
tential numerical model error), and therefore, we can calculate streamflow depletion in each segment and 
at each stress period for each of our 166 pumping wells. We automated MODFLOW runs using the FloPy 
package for Python (Bakker et al., 2016, 2018).

Since changing groundwater model boundary conditions (such as pumping rates) can impact model con-
vergence and stability, we screened MODFLOW output for anomalous results prior to comparison. We used 
two approaches to screen for anomalous results in all MODFLOW simulations, each of which corresponds 
to a single pumping well. First, we identified additive outliers in the timeseries of the difference in overall 
mass balance error between the pumping simulation and the baseline simulation (Chen & Liu, 1993; López-
de-Lacalle, 2019). Second, we identified any stress period where MODFLOW estimated negative streamflow 
depletion either in an individual segment or summed across all segments exceeding 1% of the maximum 
pumping rate for that well. For both of these comparisons, we identified the stress periods at which anom-
alous MODFLOW results occurred and limited our comparison to the time period between the onset of 
pumping and the stress period prior to the first anomalous MODFLOW mass balance change (Figure S8). 
Mass balance outliers indicating convergence issues were identified for 31 of the 166 pumping experiments 
tested, occurring as early as the 499th stress period and as late as the final (996th) stress period. Stress peri-
ods with anomalous results from these 31 pumping simulations were removed from analysis as described 
above. For all other pumping experiments, our comparison was conducted between the onset of pumping 
and the end of the model simulation period (December 2000).

2.3.3. Calculating Streamflow Depletion With Analytical Depletion Functions

Input for the analytical depletion functions was extracted directly from the RRCA MODFLOW model. Us-
ing consistent parameters between the two approaches was intended to focus our comparison on the im-
pact of the simplifications of analytical depletion functions relative to the numerical model on predicted 
streamflow depletion, since we do not do a direct comparison to field observations of streamflow depletion. 
The pumping rate (Qw) was extracted from the MODFLOW WEL package (Figure S3), with each grid cell 
representing a unique pumping well. The well-stream geometry (d) was extracted as the distance from each 
well to each grid cell with a STR, CHB, and DRN cell, which were grouped into the same segments used by 
the MODFLOW model which are described in Section 2.3.2. Due to the discretization of the MODFLOW 
model, the point spacing for the discretization of segments in the web and web squared depletion appor-
tionment equations was 2.6 km2 (1 mi2). Effective transmissivity (T) and storativity (S) were calculated as 
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the average T and S for all MODFLOW cells intersected by a straight line between the well and each stream 
segment. For S, we used specific yield, rather than specific storage, as input to the analytical depletion 
functions because the use of specific storage in the RRCA model is an artifact of model design, as described 
in Section 2.1. The output from the analytical depletion functions is the estimated streamflow depletion in 
each stream segment caused by each well throughout the entire RRCA simulation period.

2.3.4. Comparison Between Analytical Depletion Functions and MODFLOW

Due to the lack of segment-resolution, regional-scale streamflow depletion estimates, the calibrated MOD-
FLOW numerical model is the best available source of streamflow depletion estimates in the Republican 
River basin. Accordingly, we interpret similar estimates by the two approaches as evidence that the analyti-
cal depletion functions are also able to accurately quantify streamflow depletion. However, we acknowledge 
the potential for error in both the RRCA MODFLOW model and analytical depletion functions, and there-
fore, our study focuses on agreement and differences between the two approaches.

To systematically assess different aspects of analytical depletion function performance, we calculated four 
fit metrics which are described below. To assess the drivers of analytical depletion function performance, 
we conducted a regional sensitivity analysis for each of the fit metrics in response to well and landscape 
characteristics (Figure 2; Section 2.3.1). The regional sensitivity analysis is meant to identify conditions 
under which the performance of analytical depletion functions exceeds a defined performance threshold 
(Pianosi et al., 2016; Spear & Hornberger, 1980; Wagener et al., 2001), which we set separately for each of 
the four fit metrics:

1.  Spatial distribution of primary impact: The percentage of pumping simulations in which the stream seg-
ment most affected by groundwater pumping matched between the analytical depletion functions and 
MODFLOW model. For regional sensitivity analysis, a threshold value of 50% was used to separate good 
(match > 50%) from poor (match < 50%) performance

2.  Magnitude of primary impact: The mean absolute difference (MAD) between the volumetric depletion 
(Qs) in each stream segment predicted by the analytical depletion function and MODFLOW model, nor-
malized to the range of predicted Qs values from MODFLOW. The normalization allows for comparison 
across a range of depletion conditions—for instance, a difference in predicted Qs of 100 m3 d−1 is more 
problematic when actual Qs is 200 m3 d−1 than when actual Qs is 5,000 m3 d−1. For regional sensitivity 
analysis, a threshold value of 0.25 was used to separate good (normalized MAD ≤ 0.25) from poor (nor-
malized MAD > 0.25) performance. Note that we use the term MAD, rather than Mean Absolute Error 
because differences between the MODFLOW model and analytical depletion functions may be caused 
by errors in either of the two approaches

3.  Spatial distribution of overall impacts: The Kling-Gupta Efficiency (KGE) between the volumetric de-
pletion (Qs) in each stream segment predicted by the analytical depletion function and MODFLOW 
model. KGE is a hydrological performance indicator which accounts for differences in correlation, var-
iability, and bias (Gupta et al., 2009; Kling et al., 2012). Similar to the Nash-Sutcliffe Efficiency, a KGE 
value of 1.0 indicates perfect agreement and lower values indicate worse agreement. As a benchmark, 
KGE > −0.41 indicates better agreement than simply using the mean (Knoben et al., 2019). For region-
al sensitivity analysis, a threshold value of −0.41 was used to separate good (KGE ≥ −0.41) from poor 
(KGE < −0.41) performance

4.  Magnitude of overall impacts: The bias between the total streamflow depletion across all segments for an 
individual well simulated by the analytical depletion function and the MODFLOW model, normalized 
to the range of predicted total streamflow depletion from MODFLOW. For regional sensitivity analysis, a 
threshold value of 75% was used to separate good (absolute bias ≤ 75%) from poor (absolute bias > 75%) 
performance

3. Results and Discussion
3.1. Overall Performance

Overall, we find a strong agreement between the analytical depletion functions and MODFLOW predictions 
of streamflow depletion. Variability among analytical depletion function formulations is explored in the 
following section. The best-performing analytical depletion function combined the adjacent + expanding 
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stream proximity criteria, the web squared depletion apportionment equation, and the Glover analytical 
model, which agrees with the results from a previous comparison in the Navarro River Watershed (Zipper, 
Gleeson, et al., 2019).

There is strong agreement between this analytical depletion function and the MODFLOW model across 
our four performance criteria (Table 1). Over the final 20 years of the simulation period, the most-affected 
stream segment is identified correctly for 53.9% of pumping wells, the MAD of predicted depletion in the 
most-affected segment is 0.048 of the range in predicted depletion, the KGE of predicted depletion across all 
segments is 0.779, and the bias for predicted total streamflow depletion is 0.4%. Analytical depletion func-
tion performance is significantly better than using a standalone analytical model (without stream proximity 
criteria or depletion apportionment equations) for all metrics except the identification of the most affected 
stream segment (Table 1), highlighting the ability of analytical depletion functions to improve predictions 
for real-world settings compared to a standalone analytical model.

Identification of the most-affected segment is substantially lower than previous work, which was generally 
>70% correct in the Navarro River Watershed (Zipper, Gleeson, et al., 2019). Results from the standalone an-
alytical model, which always used the stream segment closest to each well, had the same skill in identifying 
the most-affected segment (53.9%) which indicates that for 46.1% of wells the most-affected stream segment 
was not the closest stream segment to the well. This may be driven by the fact that well-stream distances and 
numerical model discretization are an order of magnitude larger in this domain compared to the Navarro 
River watershed, and therefore subsurface controls on flow such as spatial heterogeneity in T and S exert a 
stronger control over the distribution of pumping impacts.

Despite a negligible overall bias, this analytical depletion function tends to have a higher estimate than 
MODFLOW for both segment-resolution and total streamflow depletion at low magnitudes and a lower es-
timate at high magnitudes (Figure 3). The largest differences between MODFLOW and analytical depletion 
function estimates tend to be driven by a relatively small number of wells which are located near the edge 
of the domain, which is consistent for both segment-resolution and total streamflow depletion. The cluster 
of points in which the analytical depletion function produces substantially higher estimates of depletion 
compared to MODFLOW are associated with two wells on the southeastern margin of the domain that have 
several extreme characteristics relative to the overall well sample. These wells are the minimum possible 
distance from surface water cells given the model discretization (one grid cell, or 1.6 km) yet relatively far 
from EVT cells (>45 km, or 85th percentile among well sample), and also have very low transmissivity 
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Stream proximity 
criteria Depletion apportionment equation

Spatial distribution 
of primary impact 
(% most-affected 

correct)

Magnitude of primary 
impact (MAD segment 
streamflow depletion, 

normalized)

Spatial distribution of 
overall impacts (KGE, 
segment streamflow 

depletion)

Magnitude of overall 
impacts (% bias, 
total streamflow 

depletion)

Adjacent Inverse distance 50.7 0.056 0.701 −8.0

Adjacent Inverse distance squared 50.8 0.054 0.695 15.1

Adjacent Web 52.4 0.045 0.699 −20.9

Adjacent Web squared 53.9 0.048 0.767 4.2

Adjacent + expanding Inverse distance 50.0 0.057 0.697 −18.0

Adjacent + expanding Inverse distance squared 50.1 0.053 0.737 9.2

Adjacent + expanding Web 52.5 0.047 0.671 −26.5

Adjacent + expanding Web squared 53.9 0.048 0.779 0.4 

Analytical only Analytical only 53.9 0.06 0.555 32.5

Note. All of the analytical depletion functions shown in this table included DRN features.
Abbreviations: KGE, Kling-Gupta Efficiency; MAD, mean absolute difference.
Bold values in each column indicate analytical depletion functions which are not significantly different from the best-performing function for that metric 
(p > 0.05 using Tukey's honest significant difference test).

Table 1 
Analytical Depletion Function Performance for Different Fit Metrics, Calculated for Each Month of Simulations and Averaged Over the Final 20 Years of the 
Simulations.
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(∼50 m2 d−1, or 6th percentile). In contrast, the points in which analytical depletion functions have the 
largest underestimate relative to MODFLOW are associated with two wells on the northern edge of the do-
main that are also extremely close to a stream (two grid cells, or 3.2 km) but have a very high transmissivity 
(∼1900 m2 d−1, or 95th percentile).

The primary differences between segment-resolution streamflow depletion (Figure 3a) and total streamflow 
depletion caused by a well (Figure 3b) occur at low magnitudes of depletion. As discussed above, all points 
with high magnitudes of depletion tend to be very close to a surface water feature of some sort and therefore 
depletion is dominated by a single segment. In contrast, wells causing low levels of depletion tend to be far 
from stream segments and therefore depletion is distributed throughout more segments, but remains low 
even when the depletion is added together across all segments.

While there is variability in bias among analytical depletion functions (Table  1), none of the analytical 
depletion function formulations predict substantially higher depletion than the best-performing analytical 
depletion function (Figures S9 and S10), indicating that the underestimate in depletion at high magnitudes 
(Figure 3) may be a persistent problem for analytical depletion functions in this setting. This finding is in 
contrast to the typical assumption that analytical approaches provide conservative estimates of streamflow 
depletion (Rathfelder, 2016; Sophocleous et al., 1995) and may be problematic from a water management 
perspective because underestimating the depletion from the wells with the largest impacts could lead to an 
overallocation of water resources (Zipper, Dallemagne, et al., 2018). As a result, analytical depletion func-
tions should not be considered a “worst-case” estimate of depletion, but rather a minimally biased estimate 
which may overestimate or underestimate depletion relative to the MODFLOW model.

3.2. Performance Response to Analytical Depletion Function Formulation and Input Data

Analytical depletion formulation had relatively little impact on most of the model performance metrics. 
Comparing among stream proximity criteria, there is little difference between the Adjacent and Adja-
cent + Expanding stream proximity criteria (Table 1), likely due to the large size of the domain and rel-
atively sparse stream network compared with Zipper, Gleeson, et al. (2019). Comparing among depletion 
apportionment equations, the inverse distance and inverse distance squared depletion apportionment 
equations do not perform the best for any of the fit metrics evaluated (Table 1) indicating that consider-
ing stream network geometry with the web and web squared improves performance, though differences 
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Figure 3. Comparison between analytical depletion function and MODFLOW predictions of (a) segment-scale 
streamflow depletion, (b) total streamflow depletion summed across all segments for a given well. Circles on depletion 
plot indicate “higher estimate” and “lower estimate” points discussed in Section 3.1 text.
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between approaches are only a few percentage points. Notably, the web squared depletion apportionment 
equation performed the best at the spatial distribution of the overall impacts (regardless of stream proximity 
criteria used), demonstrating its effectiveness at identifying streamflow depletion across a stream network. 
The superior overall performance of the web squared depletion apportionment equation relative to the 
web equation is due to a negative bias for wells with high amounts of total streamflow depletion (Table 1; 
Figure S10). This is caused by the increased weight given to near-well stream segments in the web squared 
approach (Zipper, Dallemagne, et al., 2018).

Both the magnitude of predicted depletion and the relationship between MODFLOW and analytical deple-
tion functions varied as a function of the boundary condition used in the MODFLOW model. In general, the 
highest levels of depletion tended to be predicted for the CHB, which runs along the north side of the model 
domain (Figure 2a), and analytical depletion function estimates of depletion were consistently lower than 
MODFLOW (Figure 4a). In contrast, predicted depletion from the STR tended to be more evenly distributed 
with a mixture of overestimates and underestimates relative to the MODFLOW model (Figure 4b). Deple-
tion from drain features (which are diffuse boundaries representing springs in this model; Figure 2a) was 
small, but analytical depletion functions had consistently higher estimates than MODFLOW (Figure 4c).

The differences in predicted depletion among these boundary conditions are likely driven by a combination 
of hydrostratigraphy and MODFLOW model design. First, the CHBs are found along the north side of the 
model domain and this region has the highest estimated transmissivity (Figure 2a) due to more conductive 
sediments and a greater saturated thickness (RRCA, 2003). These higher conductivity materials, along with 
the close proximity of some wells to the stream (discussed in Section 3.1), explains why the largest depletion 
estimates are found for the northern part of the domain along the CHB. Second, MODFLOW uses a stre-
ambed conductance term to simulate potential low-conductivity streambed materials for stream and drain 
features but not for CHBs. This streambed layer is not represented in the Glover analytical model we use in 
our analytical depletion functions. Use of an analytical model that includes streambed conductance, such 
as Hunt (1999), may improve agreement for stream and drain boundary conditions, but would cause further 
underestimation of depletion in CHBs.

Since analytical models are not traditionally designed for use in diffuse discharge features such as the 
springs represented by the DRN, we also compare analytical depletion function performance with and 
without drain features (Figure S11). Removing drains had relatively small impacts on model performance, 
particularly at high levels of depletion. Overall, removing DRNs meant that estimates of depletion in DRN 
segments went to 0, and as a result estimates of depletion in some other boundary conditions increased 
(Figure S11). Removing DRN features from the analytical depletion functions had mixed impacts on our 
four performance metrics. When DRNs were excluded from analytical depletion function calculations, 
the identification of the most affected segments degraded (42.2%, compared to 53.9% when DRNs were 
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Figure 4. Comparison between analytical depletion function and MODFLOW predictions of segment-scale streamflow depletion for (a) CHB package, (b) STR, 
and (c) DRN in MODFLOW. CHB, constant head boundary; DRN, drain package; STR, stream package.
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included) and total streamflow depletion had a negative bias of −8.4% (compared to 0.4% with DRNs). 
However, normalized MAD of depletion for the most affected segment improved to 0.043 without DRNs 
(compared to 0.048 with DRNs) and KGE for depletion of all stream segments rose to 0.811 without DRNs 
(compared to 0.779 with DRNs).

3.3. Well and Landscape Drivers of Performance Variability

Using the threshold defined in Section 2.3.4 for each performance metric, we found that 13 wells had good 
performance for all four metrics, 13 wells had good performance for three metrics, 33 wells had good per-
formance for two metrics, 38 wells had good performance for a single metric, and 23 wells did not have 
good performance for any metric. To investigate the relative importance of each parameter with compara-
ble sample sizes, we compared wells with good performance in at least two fit metrics to wells with good 
performance in less than two fit metrics (Figure 5). Differences in the empirical cumulative distribution 
functions between the two samples for a given parameter indicates a potentially significant impact of that 
parameter on overall analytical depletion function performance (Pianosi et al., 2016; Wagener et al., 2001). 
Comparing across all fit metrics concurrently, the only two parameters that led to significant differences 
between these two samples were the hydrostratigraphic properties of transmissivity and aquifer storage (the 
product of specific yield and saturated thickness). Wells tended to have better performance at intermediate 
to high values of transmissivity, agreeing with the observed drivers of over- and underestimated depletion 
(Figure 3). Similarly, agreement between the analytical depletion functions and the numerical model was 
greater at intermediate to high (>5 m) values of aquifer storage (Figure 5).

Investigating individual fit metrics, the regional sensitivity analysis found a significant impact of all of the 
well and landscape properties except pumping rate on at least one of the fit metrics, but no well or landscape 
property had a significant impact on all fit metrics (Figure 6). For pumping rate, none of the fit metrics 
differed significantly between wells with a good and poor fit, which supports the long-held assumption that 
streamflow depletion can be estimated as a fraction of pumping, independent of abstraction rate (Glover & 
Balmer, 1954; Hunt, 1999; Theis, 1941). Transmissivity significantly affected the most fit metrics, with inter-
mediate transmissivity values associated with improved prediction of depletion (MAD in the most-affected 
segment and KGE in all segments) and bias. The difference between the “good” and “poor” wells at inter-
mediate values of transmissivity further supports the observation that performance degrades in extremely 
high and low transmissivity settings near streams (Figure 3), and that variability in hydraulic conductiv-
ity is an important control over analytical depletion function accuracy (B.-D. Li et al., 2016; Sophocleous 
et al., 1995). Interestingly, aquifer storage had different effects depending on whether the primary impacts 
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Figure 5. Regional sensitivity analysis results, expressed as empirical cumulative distribution functions for wells with 
good performance in at least two fit metrics and wells with good performance in less than two fit metrics. In shaded 
panels, distributions of the two samples are expected to be drawn from the same distribution (two-sample Kolmogorov-
Smirnov test p > 0.05).
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or the overall impacts were being considered. Lower storage values tended to be associated with better 
agreement between the MODFLOW model and the analytical depletion functions for identification of the 
most affected segment, whereas higher storage was associated with better performance for the KGE of all 
stream segments (Figure 6). The differences in the performance-storage relationship indicate that assessing 
the relative impact and importance of a given parameter depends on the aspect of model performance being 
considered.

There was an apparent threshold-type response as distance to the closest surface water feature increased; 
the identification of the most-affected segment and the total streamflow depletion bias both degraded sig-
nificantly at distances greater than ∼20 km. For distance to cells with ET, which is an alternate source of 
capture in the MODFLOW model that is not considered by the analytical depletion functions, wells that 
performed poorly for identifying the most-affected segment and MAD of depletion were primarily concen-
trated at shorter distances, while the MAD of depletion estimates improved at further distances to ET. Since 
phreatophytic ET is primarily concentrated along stream channels in the MODFLOW model (RRCA, 2003), 
this indicates a spatial interplay between streamflow and ET capture sources which merits future investiga-
tion (Condon & Maxwell, 2019). The water table depth had only a minor influence on the fit metrics, with 
better depletion predictions at intermediate water table depths (∼20–50 m). It is important to note that we 
were assessing fit between the analytical depletion functions and the MODFLOW model, not agreement 
with field observations (which are not available). As a result, the division of fit into “good” and “poor” cate-
gories may be driven by errors in the MODFLOW model instead of or in addition to errors in the analytical 
depletion functions, and potential errors in the MODFLOW model may also vary in response to parameters 
evaluated here such as well-stream distance.

While we did not use the distance to the edge of the model domain as one of the variables guiding our 
well sample selection, we conducted a post hoc analysis to evaluate whether it had a significant impact on 
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Figure 6. Regional sensitivity analysis results, expressed as empirical cumulative distribution functions for well 
characteristics for each performance criteria. In shaded panels, distributions of “good” and “poor” groups are expected 
to be drawn from the same distribution (two-sample Kolmogorov-Smirnov test p > 0.05).
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performance. We found that analytical depletion functions more successfully identify the most-affected 
segment and have an acceptable bias for wells that were closer to no-flow boundaries (Figure S12). This 
response is very similar to the observed influence of distance to the closest surface water feature (Figure 5) 
and we were not able to isolate the impacts of these no-flow boundaries because they are often colocated 
with or near surface water features (Figure 2). In aquifers of limited lateral extent, analytical models for 
bounded aquifers (Huang et al., 2018) may be useful methods to integrate into analytical depletion func-
tions, but would need additional testing.

Combined, our analysis indicates that data collection efforts should prioritize high-accuracy estimates of 
transmissivity and storativity to improve accuracy of both streamflow depletion and groundwater deple-
tion predictions, since hydraulic diffusivity (the ratio of storativity to transmissivity) is fundamental to the 
timing and magnitude of streamflow depletion (Barlow & Leake, 2012). In areas with high-quality water 
use and water level data, emerging data-driven approaches may be a valuable tool for improving storativity 
estimates (Butler et al., 2016, 2020; Whittemore et al., 2016).

3.4. Synthesis With Previous Analytical Depletion Function Evaluations

This work extends previous evaluations of analytical depletion functions by comparing their output to a 
calibrated numerical model in a highly stressed aquifer, a setting where analytical depletion functions have 
not previously been tested, and by systematically assessing the influence of well and hydrostratigraphic 
characteristics on results. Synthesizing across studies, we find general agreement that the adjacent + ex-
panding stream proximity criteria and the web squared depletion apportionment equation produce the best 
agreement with numerical model output (Zipper, Dallemagne, et al., 2018; Zipper, Gleeson, et al., 2019). We 
also found performance was best when wells are close to streams, a finding that is consistent with previous 
work in coastal California (Zipper, Gleeson, et al., 2019) but in contrast to a study in British Columbia that 
found better agreement for wells further from streams (Q. Li et al., 2020). We also extend this previous work 
by testing performance across 166 wells with a variety of pumping rates and demonstrated that performance 
is insensitive to pumping rate, indicating that analytical depletion functions are likely to be equally useful 
regardless of the magnitude of groundwater abstractions.

This study and previous work raise several key questions for further evaluation. First, we identify a potential 
spatial performance-related interaction between the distance from the well to the closest stream and clos-
est ET cell (Figure 6). Additional testing is necessary to determine the conditions in which phreatophytic 
ET confounds analytical depletion function estimates of streamflow depletion (Condon & Maxwell, 2019). 
Second, this and previous evaluations have focused on evaluation of a single well in isolation. While the 
current study investigates performance in the context of a heavily stressed aquifer with many pumping 
wells, we isolated effects of an individual well by turning wells on/off one-at-a-time. While it is widely 
assumed that the output from analytical models is additive, work in the Republican River Watershed has 
shown this may not be the case (Schneider et al., 2017). For application of analytical depletion functions 
in heavily stressed aquifers, systematic testing of cumulative impacts by evaluating the impacts of multiple 
wells concurrently is critical. Third, recent field investigations found that analytical model performance in 
an urban setting varied as a function of stream stage (Flores et al., 2020) and will be important to test ana-
lytical depletion functions in a variety of stream stage conditions. Finally, we evaluated analytical depletion 
functions via comparison to a calibrated numerical model, but not via direct comparison to field-based es-
timates of streamflow depletion. This is because there are not currently techniques that are able to quantify 
segment-resolution, regional-scale estimates of streamflow depletion from observational data, and there-
fore, numerical models are considered the most accurate approach (Barlow & Leake, 2012). Further work to 
develop improved large-scale high-resolution streamflow depletion benchmarking datasets would benefit 
both the evaluation of analytical depletion functions as well as numerical models and water managers.

Given the low computational and data requirements of analytical depletion functions relative to numerical 
models, they may be a particularly valuable tool for applications requiring many streamflow depletion es-
timates under different conditions such as decision support tools, time series analysis, and simulation-op-
timization management modeling. Huggins et al.  (2018) developed a workflow for integrating depletion 
apportionment equations and analytical models into existing web-based water decision support tools. Fur-
thermore, analytical depletion functions could be used to improve parameterization of pumping impacts 
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in time series analysis approaches, which typically require a head response function that is often based on 
analytical methods (Bakker & Schaars, 2019; Obergfell et al., 2019; Shapoori et al., 2015). Finally, simula-
tion-optimization models require the ability to test many different management approaches (A. Singh, 2014; 
Wagner, 1995). While this can be accomplished in relatively small domains using numerical models (Fie-
nen et al., 2018), analytical depletion functions may complement other approaches such as metamodeling 
(Fienen et al., 2015) to provide estimates of streamflow depletion in large model domains under diverse 
scenarios and identify optimal management solutions. For all of these potential applications, however, care 
should be taken to ensure that uncertainty and limitations of analytical approaches are appropriately con-
sidered, quantified, and shared with relevant stakeholders, so that decision-makers can determine whether 
the accuracy is sufficient for their needs.

4. Conclusions
Reliable estimates of streamflow depletion are critical for effective conjunctive management of groundwa-
ter and surface water resources. This study is the first systematic evaluation of analytical depletion func-
tions for use in a heavily stressed unconfined aquifer and assesses how agreement between the numerical 
and analytical model varies as a function of well and hydrostratigraphic characteristics. We found that an-
alytical depletion functions can produce similar estimates of streamflow depletion to an existing calibrated 
numerical model during both the pumping and nonpumping seasons, though they tend to over- or under-
estimate depletion relative to MODFLOW for wells very close to surface water features. Comparing among 
eight different analytical depletion functions, we found relatively little sensitivity to analytical depletion 
function formulation, but a strong response to the hydrostratigraphic properties of transmissivity and aqui-
fer storage, indicating the critical importance of reliable parameter estimates. Among the analytical deple-
tion functions, the one that performs most similarly to the numerical model included time-varying stream 
proximity criteria and a depletion apportionment equation that accounted for stream network geometry, 
which is consistent with previous studies. The analytical depletion function and numerical model are most 
similar for wells within ∼20 km of a stream and intermediate values of transmissivity, with no sensitivity 
to pumping rate. These results do not suggest that numerical models should be replaced or superseded by 
analytical depletion functions, but rather that analytical depletion functions are a useful low-cost, low-effort 
approach to obtain comparable estimates of streamflow depletion in settings where calibrated numerical 
models are not available.

Data Availability Statement
The Republican River Compact Administration groundwater model is available at http://www.republican-
rivercompact.org/. Code and data developed during this study are available via the Open Science Frame-
work at https://doi.org/10.17605/OSF.IO/CPV94 .
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